Connect with us

(3 December 2020 – NASA) NASA has selected two SmallSat missions – a study of Earth’s outer most atmosphere and a solar sail spaceflight test mission – to share a ride to space in 2025 with the agency’s Interstellar Mapping and Acceleration Probe (IMAP).

The missions – the Global Lyman-alpha Imagers of the Dynamic Exosphere (GLIDE) and Solar Cruiser – were selected as Solar Terrestrial Probes (STP) Missions of Opportunity. GLIDE will help researchers understand the upper reaches of Earth’s atmosphere – the exosphere – where it touches space. Solar Cruiser demonstrate the use of solar photons for propulsion in space.

NASA has chosen two new science proposals for nine-month concept studies to advance our understanding of how the particles and energy in space – shown here flowing from the Sun in an illustration of the solar wind – affect the fundamental nature of space. One proposal will ultimately be chosen to launch along with NASA’s upcoming Interstellar Mapping and Acceleration Probe in October 2024. (courtesy: NASA)

The launch of the IMAP mission in 2025 to the first Lagrangian equilibrium point (L1), about 1 million miles towards the Sun, will be a pathfinder for NASA’s new RideShare policy. With the policy, the agency’s Science Mission Directorate (SMD) will plan – from the inception of major missions – to take advantage of excess launch capacity and provide increased access to space for SmallSats. IMAP will help researchers better understand the interstellar boundary region, where the solar wind and the solar magnetic field it transfers to the edge of the solar system collide with galactic material and the galactic magnetic field.

Focusing on small satellites and tech demonstrations helps prove the capabilities of these smaller missions and pairing them with existing missions for launch provides more avenues for learning about the solar system and developing innovative technical capabilities.

“The study of the solar influence on interplanetary space and the area around our Earth has made great advances just in the past decade,” said Thomas Zurbuchen, associate administrator for science at NASA Headquarters in Washington. “I’m confident the next decade promises even more new discoveries and historic technology innovations.”

The science selection was made competitively from proposals to help better understand the fundamental nature of space and the interaction between space and Earth’s environment. As the selected science mission, GLIDE will study variability in Earth’s exosphere by tracking far ultraviolet light emitted from hydrogen. The exosphere is the outer region of Earth’s atmosphere that touches space – a region where atoms can escape Earth. Observing the global structure of the exosphere requires a telescope that is outside of the outer reaches of the atmosphere, which extend almost to the Moon. The IMAP launch trajectory to the inner Lagrangian point, the point of the Earth-Sun system that provides an uninterrupted view of the Sun, will provide just such a perspective for the GLIDE mission and is ideally suited for the first continuous observations of the exosphere and its variations in response to solar storm disruptions.

GLIDE will fill a measurement gap, as only a handful of comparable ultraviolet light images have previously been made from outside the exosphere. The mission will gather observations at a high rate, with a view of the entire exosphere, ensuring a global and comprehensive set of data. Understanding the ways in which Earth’s exosphere changes in response to influences of the Sun above or the atmosphere below, will provide us with better ways to forecast and, ultimately, mitigate the ways in which space weather can interfere with radio communications in space.

The principal investigator for GLIDE is Lara Waldrop at the University of Illinois at Urbana-Champaign. The GLIDE investigation is budgeted for $75 million.

Solar Cruiser was selected as the technology demonstration mission. Consisting of a nearly 18,000-square-foot (nearly 1,700-square-meter) solar sail, it will demonstrate the ability to use solar radiation as a propulsion system. Such a system could provide access to new orbits enabling high-value science, including SmallSat observations from deep space, out of the ecliptic plane, and in stationary orbits in the Earth’s geo-tail. Solar Cruiser will demonstrate one such orbit, where a spacecraft maintains position along the Earth-Sun line at a point closer to the Sun than L1. By positioning a monitoring spacecraft closer to the Sun, space weather scientists hope to obtain more advanced warnings of solar storms headed to Earth.

The principal investigator for Solar Cruiser is Les Johnson at NASA’s Marshall Space Flight Center in Huntsville, Alabama. The Solar Cruiser investigation is budgeted for $65 million.

A second STP science Mission of Opportunity, the Spatial/Spectral Imaging of Heliospheric Lyman Alpha (SIHLA), also was provided funding toward a final selection decision at a later date based on budget and RideShare opportunities. SIHLA would use an innovative technique to map the entire sky to determine the shape and underlying mechanisms of the boundary between the heliosphere, the area of our Sun’s magnetic influence, and the interstellar medium, a boundary known as the heliopause.

“Launching several missions together helps us maximize science while keeping costs down,” said Nicky Fox, Heliophysics Division director at NASA Headquarters in Washington. “We’re expanding the range and composition of a robust fleet of missions studying the Sun and space weather, and these two new selections will help advance into areas where we need to know more.”

From the start of IMAP mission formulation, SMD planned to include secondary spacecraft on the launch under the agency’s SMD Rideshare Initiative, which cuts costs by sending multiple missions on a single launch. This launch will also include the National Oceanic and Atmospheric Administration’s (NOAA) Space Weather Follow-On mission, which will expand that agency’s space weather forecasting.

“Expanding our capabilities and knowledge through experimental missions using SmallSats and tech demos enables us to do and try so many more things,” said Peg Luce, deputy director of the Heliophysics Division at NASA Headquarters in Washington. “Our Sun has thrown a lot of interesting questions at us lately, and we’re using every avenue to study space weather and its impact on our planet and our solar system.”

Funding for these missions comes from the Heliophysics Solar Terrestrial Probes program, which is managed by NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Source link

0

Space

Satnav antenna built for ends of the Earth

Satnav antenna built for ends of the Earth

(27 Janaury 2021 – ESA) A new ESA-supported wide-bandwidth satnav antenna has been designed to receive both satellite and augmentation signals from anywhere in the sky, even down to just a couple of degrees above the horizon.

With a growing number of satnav constellations in operation, Canada-based Tallysman Wireless’s new VeroStar antenna aims to pick up all available signals, as well as support the availability of L-band correction service signals. Its development was supported through ESA’s Navigation Innovation and Support Program (NAVISP) programme.

The precision of GNSS fixes is routinely sharpened with correction signals from augmentation systems, such as Europe’s EGNOS and the US WAAS, which also provide ongoing integrity (or reliability) information for high-accuracy and safety-of-life uses, such as aircraft descents. However, these augmentation signals are transmitted by geostationary satellites, hanging at fixed points above the equator, meaning that they become less visible for receivers in the far north or south.

VeroStar wide-bandwidth satnav antenna (courtesy: Tallysman)

satnav 2

Petal antenna design (courtesy: Tallysman)

“If you think of a Global Navigation Satellite System (GNSS) receiver as resembling a camera, then the antenna would be the lens,” explains Allen Crawford of Tallysman. “Now, you might have an excellent top-of-the-range camera, but if it doesn’t have a clean, distortion-free, and well-focused lens, then all you’re going to get are blurred pixels that no post-processing software can fix.

“So our antenna is like a lens, except it gathers radio signals instead of light – and it is the first step in the measurement process. We want the antenna to reproduce the received satellite signals as precisely as possible, in terms of amplitude and of signal phase, on a fully representative basis, for the receiver to process.”

Available in various models and sizes, including pole-mounted, surface-mounted, and embedded versions, the VeroStar is aimed at high-performance mobile applications, such as land surveying, precision farming, maritime and autonomous vehicle navigation, typically requiring positioning accuracy down to a few centimetres.

“Different customers have differing requirements,” adds Julien Hautcouer of Tallysman. “There are plenty of GNSS antennas that work on a ‘good enough’ basis – for instance, antennas on top of cars just need to give a rough position, then the navigation receiver uses its map to estimate what street you’re on.”

“What we wanted to do, starting from scratch with this new design, for high-precision mobile users, was to be able to employ as many satellite signals from as many constellations as possible – not just GPS but also Galileo, the Russian, Chinese, Indian, and Japanese systems, plus correction service signals – and this requires good stable performance across a very wide bandwidth.”

“We want it to provide nothing but the pure right-hand circular signals, minimising any misleading reflected ‘multipath’ signals,” notes Gyles Panther, CTO of Tallysman. “We also paid special attention to the symmetry of our antenna, so that satellite signals are treated in exactly the same way, no matter where in the sky the signals are coming from. It’s like looking through a good quality wine glass when you rotate it in front of your eyes, and your view through it stays the same.”

At the same time, the modern radio spectrum is very crowded, so the design team paid particular attention to filtering out radio interference that could cause a situation where a drone might be forced down by local radio noise.

The VeroStar design is based on eight curled ‘petals’ of printed circuit boards, inspired by the post-war Alford loop antenna, which was originally designed for simultaneous transmission of multiple FM radio signals.

“The Tallysman team performed a long optimisation process using electromagnetic modelling to define the final shape for manufacturing,” notes ESA navigation engineer Nicolas Girault, the project’s technical officer. “They ended up with an inexpensive, easy to repeat process, which is ideal, really.”

The design maximises antenna efficiency and performance, adds ESA engineer Damiano Trenta: “Its rotational symmetry geometry and wideband behaviour help to provide a stable phase centre over frequency and angular range. Optimisation of the petals’ shape helps to improve the minimum gain at very low elevation angles, compared with the current products on the market, and keeps a very low cross-polar level for multipath mitigation. ”

Subsequent production line checks revealed this value remained consistent across all antennas.

The VeroStar models are now being marketed commercially both individually and as an element within customer products. VeroStar development was supported through NAVISP Element 2 – aiming to boost Member State competitiveness through the development of improved or innovative commercial products – as well as the Canadian Space Agency.

Source link

0
Continue Reading

Space

NASA’s OSIRIS-REx mission plans for May asteroid departure

NASAs OSIRIS REx mission plans for May asteroid departure

(26 January 2021 – NASA) On May 10, NASA’s Origins, Spectral Interpretation, Resource Identification, Security, Regolith Explorer (OSIRIS-REx) spacecraft will say farewell to asteroid Bennu and begin its journey back to Earth.

During its Oct. 20, 2020, sample collection event, the spacecraft collected a substantial amount of material from Bennu’s surface, likely exceeding the mission’s requirement of 2 ounces (60 grams). The spacecraft is scheduled to deliver the sample to Earth on Sep. 24, 2023.

This illustration shows the OSIRIS-REx spacecraft departing asteroid Bennu to begin its two-year journey back to Earth. (courtesy: NASA/Goddard/University of Arizona)

“Leaving Bennu’s vicinity in May puts us in the ‘sweet spot,’ when the departure maneuver will consume the least amount of the spacecraft’s onboard fuel,” said Michael Moreau, OSIRIS-REx deputy project manager at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Nevertheless, with over 593 miles per hour (265 meters per second) of velocity change, this will be the largest propulsive maneuver conducted by OSIRIS-REx since the approach to Bennu in October 2018.”

The May departure also provides the OSIRIS-REx team with the opportunity to plan a final spacecraft flyby of Bennu. This activity was not part of the original mission schedule, but the team is studying the feasibility of a final observation run of the asteroid to potentially learn how the spacecraft’s contact with Bennu’s surface altered the sample site.

If feasible, the flyby will take place in early April and will observe the sample site, named Nightingale, from a distance of approximately 2 miles (3.2 kilometers). Bennu’s surface was considerably disturbed after the Touch-and-Go (TAG) sample collection event, with the collector head sinking 1.6 feet (48.8 centimeters) into the asteroid’s surface. The spacecraft’s thrusters also disturbed a substantial amount of surface material during the back-away burn.

The mission is planning a single flyby, mimicking one of the observation sequences conducted during the mission’s Detailed Survey phase in 2019. OSIRIS-REx would image Bennu for a full rotation to obtain high-resolution images of the asteroid’s northern and southern hemispheres and equatorial region. The team would then compare these new images with the previous high-resolution imagery of Bennu obtained during 2019.

“OSIRIS-REx has already provided incredible science,” said Lori Glaze, NASA’s director of planetary science at the agency’s headquarters in Washington. “We’re really excited the mission is planning one more observation flyby of asteroid Bennu to provide new information about how the asteroid responded to TAG and to render a proper farewell.”

These post-TAG observations would also give the team a chance to assess the current functionality of science instruments onboard the spacecraft – specifically the OSIRIS-REx Camera Suite (OCAMS), OSIRIS-REx Thermal Emission Spectrometer (OTES), OSIRIS-REx Visible and Infrared Spectrometer (OVIRS), and OSIRIS-REx Laser Altimeter (OLA). It is possible dust coated the instruments during the sample collection event and the mission wants to evaluate the status of each. Understanding the health of the instruments is also part of the team’s assessment of possible extended mission opportunities after the sample is delivered to Earth.

The spacecraft will remain in asteroid Bennu’s vicinity until May 10, when the mission will enter its Earth Return Cruise phase. As it approaches Earth, OSIRIS-REx will jettison the Sample Return Capsule (SRC). The SRC will then travel through the Earth’s atmosphere and land under parachutes at the Utah Test and Training Range.

Once recovered, NASA will transport the capsule to the curation facility at the agency’s Johnson Space Center in Houston and distribute the sample to laboratories worldwide, enabling scientists to study the formation of our solar system and Earth as a habitable planet.

Goddard provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona in Tucson is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. Lockheed Martin Space in Littleton, Colorado, built the spacecraft and provides flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which NASA’s Marshall Space Flight Center in Huntsville, Alabama, manages for the agency’s Science Mission Directorate in Washington.

Source link

0
Continue Reading

Space

Inmarsat to provide satellite connectivity for UK’s first zero carbon regional air transport network

Inmarsat to provide satellite connectivity for UKs first zero carbon

(25 January 2021 – Inmarsat) Inmarsat today announced its participation in a ground-breaking new initiative funded by the UK Government to develop the country’s first automated, zero carbon regional air transportation network.

Project HEART (Hydrogen Electric and Automated Regional Transportation) will develop hydrogen powered, automated and remote piloting solutions for small aircraft carrying between 9 and 19 passengers, travelling ‘short hops’ of fewer than 500 nautical miles. In addition to its environmental credentials, the convenient zero-carbon travel option aims to enable scalability and lead to reductions in operating costs, door-to-door travel times and ticket prices.

(courtesy: Inmarsat)

Up to 100 licensed airfields throughout the UK will be made available as part of the initiative, which is expected to enter service in 2025.

Existing ‘short hop’ air travel is economically unsustainable and reliant on government subsidies to cover high maintenance and running costs. Current operations, which require two onboard pilots, depend upon expensive and polluting gas turbine powertrains.

Project HEART offers an affordable alternative that address these deficiencies with next generation technology and a ‘system-of-systems’ approach, bringing together a network of experts to re-develop the entire aviation ecosystem. As part of this approach, Inmarsat will help to power a hybrid connectivity solution that seamlessly combines its satellite communications with terrestrial networks, enabling remote ‘digital’ co-piloting and journey critical communication in the cockpit. This allows the human pilot and the digital co-pilot functions, designed by Blue Bear Systems Research, to work together effectively and operations to be managed remotely. The technology will be evaluated on Britten-Norman aircraft.

Philip Balaam, President of Inmarsat Aviation, said: “Project HEART represents a greener, smarter and more efficient future for aviation. We are proud to support this important project of the UK Government, utilising our 30 years of experience in satellite communication, navigation and surveillance for both commercial and private aviation, as well as expertise in unmanned vehicle traffic management. Working alongside our extensive network of partners, including Honeywell Aerospace, we are particularly excited about enabling remote operations for aviation networks of the future.”

Project HEART is led by the Department for Business, Energy & Industrial Strategy (BEIS) and is funded by the Industrial Strategy Challenge Fund (ISCF) Future Flight Challenge (FFC). The consortium comprises of leading UK technology companies that will contribute resources in the areas of technology, operations, infrastructure and think tank experience.

Other innovations in development for the project include hydrogen fuel cell powertrains for aircraft (led by ZeroAvia), hydrogen refuelling solutions (led by Protium), and a Mobility as a Service (MaaS) platform, with integrated sub regional flight travel mode (led by Fleetondemand), with acceptance testing headed by The Transport Research Institute of Edinburgh Napier University. In addition, architects Weston Williamson + Partners will lead on new airport infrastructure design, while the airline Loganair and Highland and Island Airports Limited will lead on accommodation of automation and hydrogen fuelled aircraft operations.

About Inmarsat

Inmarsat is the world leader in global, mobile satellite communications. It owns and operates the world’s most diverse global portfolio of mobile telecommunications satellite networks, and holds a multi-layered, global spectrum portfolio, covering L-band, Ka-band and S-band, enabling unparalleled breadth and diversity in the solutions it provides. Inmarsat’s long-established global distribution network includes not only the world’s leading channel partners but also its own strong direct retail capabilities, enabling end to end customer service assurance.

The company has an unrivalled track record of operating the world’s most reliable global mobile satellite telecommunications networks, sustaining business and mission critical safety & operational applications for more than 40 years. It is also a major driving force behind technological innovation in mobile satellite communications, sustaining its leadership through a substantial investment and a powerful network of technology and manufacturing partners.

Inmarsat operates across a diversified portfolio of sectors with the financial resources to fund its business strategy and holds leading positions in the Maritime, Government, Aviation and Enterprise satcoms markets, operating consistently as a trusted, responsive and high-quality partner to its customers across the globe.

Source link

0
Continue Reading

Trending