Connect with us

Skoltech researchers and their colleagues from Russia and Israel have come up with a new, simple and inexpensive method of testing liquid biological samples that can be further developed to work in clinical settings, including real-time testing during surgery. The paper was published in the journal Light: Science & Applications.

Photonics meets surface science in a cheap and accurate sensor

Image credit: Pixabay (Free Pixabay license)

The most common method of real-time diagnostic testing for biological samples (such as urine or saliva) that is used in the healthcare system, optical label-free sensors, are highly sensitive, but that sensitivity comes at a cost in terms of time and resources. Looking for a more efficient alternative, the research team, coordinated by Prof. Dmitry Gorin from the Center for Photonics and Quantum Materials at the Skolkovo Institute of Science and Technology (Skoltech) and Dr. Roman Noskov from Tel Aviv University, turned to the data that these sensors normally disregard: optical dispersion of the refractive index of a sample that can act as a fingerprint of sorts for tracking the changes in its composition.

They introduced the concept of in-fiber multispectral optical sensing (IMOS) for liquid biological samples in both static and real-time modes. According to the team, this sensing method is precise, reliable and very sensitive to impurities in the sample, which can make it useful both for diagnostic purposes and for real-time simulations of various biological processes.

Hollow-core microstructured optical fiber (HC-MOF), a particular kind of optical fibers which confine light inside a hollow core surrounded by microstructured cladding, is at the heart of the new sensing approach. Liquid goes through chambers in the fiber, and spectral shifts of maxima and minima in the transmission spectrum of HC-MOF are interpreted as signals about the chemical composition of the sample. With no need for an external cavity or interferometer, the sensing system is easy and inexpensive to produce.

The researchers tested its performance on the concentration of bovine serum albumin (BSA), which is commonly used in such experiments, dissolved in water and in a phosphate-buffered saline solution. The resolution they were able to show consistently in several experiments was equivalent to 1 gram of BSA in a liter of liquid, close to the accuracy of standard albumin tests and potentially meets clinical needs.

“Our concept can be considered a platform for intraoperative analysis of biomarkers of different types. For that, we need to test it on other bioanalytes and further modify the hollow core fiber to increase specificity. Future trials of these point-of-care devices will serve as the first step for realization of the true ‘bench-to-bedside’ approach,” Gorin notes.

“In-fiber multispectral optical sensing opens new horizons in fast, cheap, and reliable analysis of blood and other bodily liquids in real time that is important for timely diagnostics of various diseases and abnormal conditions,” Noskov adds.

The team plans to continue their research in increasing specificity as well as sensitivity of this approach. They are going to file a patent application and look for industrial partners and investors interested in developing clinical devices based on this type of sensors.

This work is a result of a collaboration between not only Skoltech and Tel Aviv university, but also other organizations, including Saratov State University, Moscow State University, Moscow Institute of Physics and Technology, Tomsk State University, RAS Institute of Precision Mechanics and Control, and Nanostructured Glass Technology, an industrial partner.

Source: Skoltech




Source link

0
Continue Reading

Technology

Nokia 1.4, Nokia 6.3, and Nokia 7.3 May Launch in Late Q1 or Early Q2 This Year

nokia white bg reuters 1603260968570

Nokia 1.4, Nokia 6.3, and Nokia 7.3 could launch in Q1 or early Q2 of this year, a new report claims. All three of these Nokia phones have been in the news in the past with speculations around their release. While Nokia 1.4 is relatively new, Nokia 6.3 and Nokia 7.3 were originally expected to launch in the third quarter of 2020. It is also possible that whenever these two Nokia phones launch, they could also be named Nokia 6.4 or Nokia 7.4.

Starting with Nokia 1.4, the phone has made its way through multiple listings, as per a report by Nokiapoweruser. The report states that the phone may launch in February. Recently, specifications and pricing for Nokia 1.4 were tipped, suggesting a 6.51-inch HD+ LCD display, a quad core processor, 1GB + 16GB storage configuration, and dual-rear camera setup. The phone is expected to be priced under EUR 100 (roughly Rs. 8,800).

Nokia 6.3 and Nokia 7.3, on the other hand, have been in the news for quite a while now. The report by Nokiapoweruser states that they may launch late in the first quarter or early in the second quarter of 2021. These phones could also launch as Nokia 6.4 and Nokia 7.4.

Nokia 6.3 has been tipped in the past to come with the Qualcomm Snapdragon 730 SoC and a 24-megapixel shooter. Nokia 7.3 may feature a 6.5-inch full HD+ display with a hole-punch cutout and be powered by the Qualcomm Snapdragon 690 SoC. It could come with a 48-megapixel primary sensor and a 24-megapixel selfie shooter. Nokia 6.3 and Nokia 7.3 are expected to be backed by a 4,500mAh and a 5,000mAh battery, respectively.

Originally, the two phones were expected to launch at IFA 2020 in September. Then, it was reported that they may launch in November. Even now, Nokia or brand licensee HMD Global has not shared any information on the launch date for these phones.


Is Android One holding back Nokia smartphones in India? We discussed this on Orbital, our weekly technology podcast, which you can subscribe to via Apple Podcasts, Google Podcasts, or RSS, download the episode, or just hit the play button below.

 

Source link

0
Continue Reading

Technology

Linux 101: How to copy files and directories from the command line

linuxhero2 1

Jack Wallen continues his Linux 101 series, with an introduction on how to copy files and directories from the command line.

Are you new to Linux? If so, you’ve probably found the command line can be a bit intimidating. Don’t worry–it is for everyone at the beginning. That’s why I’m here to guide you through the process, and today I’m going to show you how to copy files and folders from the command line. 

Why would you need to copy files and folders this way? You might find yourself on a GUI-less Linux server and need to make a backup of a configuration file or copy a data directory. 

Trust me, at some point you’re going to need to be able to do this. Let’s find out how. 

SEE: Linux: The 7 best distributions for new users (free PDF) (TechRepublic)

First we’ll copy a file. Let’s say you’re about to make changes to the Samba configuration file, smb.conf and you want a backup copy just in case something goes wrong. To copy that file, use the cp command to copy the source to the destination like so:

 cp /etc/samba/smb.conf /etc/samba/smb.conf.bak

You’ve probably already encountered your first problem. Because the smb.conf file is in /etc/, you’ll need to use sudo privileges to make the copy. So the correct command is: 

sudo cp /etc/samba/smb.conf /etc/samba/smb.conf.bak 

In this example, smb.conf is our source and smb.conf.bak is our destination. You might want to preserve the file attributes (such as directory and file mode, ownership, and timestamps) during the copy. For that we use the -a option as in: 

sudo cp -a /etc/samba/smb.conf /etc/samba/smb.conf.bak

Copying a directory is done in the same way, only you use the -R option, for recursive. Let’s say you want to make a backup of the entire /etc/samba directory and you want to copy it to your home directory. That command would be: 

sudo cp -R /etc/samba ~/samba.bak

To preserve the attributes, while copying the directory, the command would be:

sudo cp -aR /etc/samba ~/samba.bak

And that’s all there is to it. You’ve just copied your first files and directories from the Linux command line. Now, go out and celebrate this victory, you’ve earned it.

Subscribe to TechRepublic’s How To Make Tech Work on YouTube for all the latest tech advice for business pros from Jack Wallen.

Also see

linuxhero2-1.jpg

Image: Pixabay

Source link

0
Continue Reading

Technology

‘Junk DNA’ plays a key role in regulating circadian clocks

Drosophila circadian rhythm

If you’ve ever had a bad case of jet lag, you know how a disruption to your body’s circadian rhythm makes it difficult to function. Molecular circadian “clocks” exist in cells throughout the body, governing more than just sleep and wake cycles — they are crucial to many aspects of human health. For more than a decade, researchers have been trying to figure out what makes them tick, in search of new insights into diseases like Alzheimer’s, cancer and diabetes.

Until now, that research has focused on what is known as clock genes, which encode proteins that drive oscillating cycles of gene expression affecting physiology and behavior. But research just published in the Proceedings of the National Academy of Sciences reveals the discovery of a new cog in the circadian clock — a genome-wide regulatory layer made up of small chains of non-coding nucleotides known as micro RNAS (miRNAs).

Junk DNA plays a key role in regulating circadian clocks

Drosophila ciacadian rhythm. Credit: Chhandama via Wikimedia Commons, CC-BY-SA-4.0

“We’ve seen how the function of these clock genes are really important in many different diseases,” said Steve Kay, PhD, Provost Professor of neurology, biomedical engineering and quantitative computational biology at the Keck School of Medicine of USC. “But what we were blind to was a whole different funky kind of genes network that also is important for circadian regulation and this is the whole crazy world of what we call non-coding microRNA.”

‘Junk DNA’ proves to be a valuable tool in circadian rhythms

Formerly thought to be “junk DNA,” miRNAs are now known to affect gene expression by preventing messenger RNA from making proteins. Past research has indicated miRNAs may have a role in the function of circadian clocks but determining which of the hundreds of miRNAs in the genome might be involved remained a problem.

Kay and his team, led by Lili Zhou, a research associate in the Keck School’s Department of Neurology, turned to the Genomics Institute of the Novartis Research Foundation (GNF) in San Diego, which has created robots capable of high throughput experiments. Working with scientists at the institute, Zhou developed a high throughput screen for a robot to test the close to 1000 miRNAs by individually transferring them into cells the team had engineered to glow on and off, based on the cell’s 24-hour circadian clock cycle.

“The collaboration with GNF made it possible for us to conduct the first cell-based, genome-wide screening approach to systematically identify which of the hundreds of miRNAs might be the ones modulating circadian rhythms,” said Zhou.

“Much to our surprise,” said Kay, “we discovered about 110 to 120 miRNAs that do this.”

With the help of Caitlyn Miller, a biochemistry undergraduate from USC Dornsife, researchers then verified the impact on circadian rhythms by inactivating certain miRNAs identified by the screen in their line of glowing cells. Knocking out the miRNAs had the opposite effect on the cells’ circadian rhythm as adding them to the cells.

Physiologic and behavioral impacts  of miRNAs

Researchers also focused on the physiologic and behavioral impacts of miRNAs. They analyzed the behavior of mice with a particular cluster of miRNAs inactivated – miR 183/96/182 – and saw that inactivating the cluster interfered with their wheel-running behavior in the dark compared with control mice. They then examined the impact of the miRNA cluster on brain, retina and lung tissue, and found that inactivating the cluster affected circadian rhythms in a different way in each tissue type – suggesting that the way the miRNAs regulate the circadian clock is tissue specific.

Understanding the impact of miRNAs on the circadian clock in individual tissue could reveal new ways of treating or preventing specific diseases.

“In the brain we’re interested in connecting the clock to diseases like Alzheimer’s, in the lung we’re interested in connecting the clock to diseases like asthma,” said Kay. “The next step I think for us to model disease states in animals and in cells and look at how these microRNAs are functioning in those disease states.”

Source: USC




Source link

0
Continue Reading

Trending