Connect with us

(12 October 2020 – Northrop Grumman) Northrop Grumman Corporation will continue supporting NASA’s Artemis missions by providing six additional abort motors and attitude control motors (ACM) for the Orion human spaceflight capsule’s Launch Abort System (LAS), under an agreement with Lockheed Martin, Orion’s prime contractor.

Northrop Grumman’s abort motor and attitude control motor supply the power that enables the Orion spacecraft crew to propel to safety in the event of an anomaly on the launch pad. (courtesy: NASA)

These motors will be used for six crewed Artemis missions III-VIII and are the first procured under the new Orion production contract.

The Launch Abort System is a three-motor stack consisting of an abort motor, an attitude control motor and the jettison motor all mounted atop the Orion spacecraft crew capsule, and the combined Orion and LAS sit atop of NASA’s Space Launch System.

“As a former astronaut, there is nothing more important to me than ensuring crew safety to the greatest extent possible,” said Charlie Precourt, vice president, propulsion systems, Northrop Grumman. “Our contribution to Orion’s Launch Abort System helps to ensure it is equipped with trusted, reliable propulsion to safeguard Artemis crews.”

The LAS is designed to carry the Orion spacecraft and its crew to safety if an anomaly occurs on the launch pad or during the SLS rocket’s climb to orbit. The abort motor would provide thrust of about 400,000 pounds in less than two seconds to lift the crew away from the launch vehicle. In this event, the attitude control motor would steer the Orion crew capsule away from the launch vehicle and orient the capsule for parachute deployment once the crew module is clear of all hazards.

northrop 4

The Launch Abort System is a three-motor stack consisting of an abort motor, an attitude control motor and the jettison motor all mounted atop the Orion spacecraft crew capsule, and the combined Orion and LAS sit atop of NASA’s Space Launch System. (courtesy: NASA)

The abort motor is manufactured at Northrop Grumman facilities in Magna, Promontory and Clearfield, Utah, and the attitude control motor is produced at the company’s Elkton, Maryland, facility. Northrop Grumman previously delivered its LAS motors to Kennedy Space Center for the Artemis I mission, set to occur next year, and for Artemis II.

From the first lunar lander to the space shuttle boosters, to supplying the International Space Station with vital cargo, Northrop Grumman has pioneered new products and ideas that have been put into orbit, on the moon, and in deep space for more than 50 years. As a major contributor to NASA’s Artemis program, the company is building on its mission heritage with new innovations to enable NASA to return humans to the moon, with the ultimate goal of human exploration of Mars.

Northrop Grumman solves the toughest problems in space, aeronautics, defense and cyberspace to meet the ever evolving needs of our customers worldwide. Our 90,000 employees define possible every day using science, technology and engineering to create and deliver advanced systems, products and services.

Source link

0

Space

Masten Space Systems awarded two NASA Tipping Point contracts

Masten Space Systems awarded two NASA Tipping Point contracts

(21 October 2020 – Masten Space Systems) NASA and Masten Space Systems announced that the Space Technology Mission Directorate has chosen Masten for two Tipping Point awards as part of the agency’s Artemis mission to return to the Moon.

The first award is for Masten’s Metal Oxidation Warming System (MOWS) which is being developed in partnership with Penn State as a chemical heating solution to help spacecraft survive in sunlight-deprived lunar environments. The second award will drive completion of Masten’s state-of-the-art aerospace testbed, named Xogdor, to provide the industry an updated flight test analog for critical Artemis technologies.

Masten’s XL-1 lunar lander will deliver NASA and commercial payloads to the Moon’s southern pole by December 2022. (coutesy: Masten Space Systems)

“We are excited to see such an auspicious group of Tipping Point awards this year,” said Masten CEO Sean Mahoney. “It’s an honor to be in such great company with all these amazing awards as NASA’s forward-looking Space Technology Mission Directorate steps up to fund the private companies who are producing out-of-the-box innovations that will take America back to the Moon, to stay.”

In partnership with Penn State, Masten will mature MOWS, a lunar warming solution with electricity cogeneration that allows spacecraft systems to survive the lunar night and operate in shadowed lunar regions. MOWS employs moderate-temperature chemical reactions for thermal control with order-of-magnitude greater specific energy than battery-based approaches. MOWS is useful for both robotic and manned missions, as both require thermal control for extended surface operations.

“MOWS technology benefits both NASA and commercial missions as it significantly expands the scope of lunar exploration missions,” said Matthew Kuhns, chief engineer at Masten. “The ability to survive the lunar night extends mission durations beyond the current capability of around 14 days, allowing missions at least six weeks, two lunar days and one lunar night, and possibly longer, greatly increasing our capacity to perform more science, operate customer payloads, and reduce risk for future Artemis missions on the Moon.”

Masten will mature its Xogdor flight vehicle to operational service to provide an updated system for testing aerospace technologies in a relevant flight environment. Over this three year project, Masten will complete the development and flight testing of a Xogdor vehicle. The defined effort will support risk reduction of technologies through flight testing in pursuit of NASA’s Moon-to-Mars campaign with a focus on building an EDL (Entry, Descent, Landing) test capability for near-term lunar missions. Xogdor will be the sixth vehicle in Masten’s line of reusable rockets, which have had more than 600 successful VTVL (Vertical Takeoff Vertical Landing) flights over 15 years of heritage.

“Xogdor is poised to become the industry’s state-of-the-art testing analog with performance capabilities far exceeding those of currently available EDL testbeds,” said Masten CTO, Dave Masten. “Through this Masten-NASA partnership, Xogdor will be available to test critical Artemis technologies, including hazard detection instruments, precision landing avionics, innovative flight software, Plume Surface Interaction (PSI) experiments, and other critical EDL experiments as early as 2023.”

“P3 is proud to be supporting Masten with Champ Turbopumps for the Xogdor rocket for this important NASA Tipping Point program,” said Phil Pelfrey, president of P3 Technologies.

“This is the most Tipping Point proposals NASA has selected at once and by far the largest collective award value,” said NASA’s Associate Administrator for Space Technology Jim Reuter. “We are excited to see our investments and collaborative partnerships bring about new technologies for the Moon and beyond while also benefiting the commercial sector.”

About Masten Space Systems

Mojave, California-based Masten Space Systems wrangles rocket powered landing from sci-fi into reality, connecting the steps from napkin, to lab, to test site, and all the way to the surface of the Moon. For over 15 years the Masten team has torn down barriers to space, working with partners of all types to create value in the space ecosystem. Masten is the partner of choice for fellow innovators, and explorers who are changing how we access and use space, bringing the benefits of space to the benefit of humans here on Earth.

About NASA STMD’s Tipping Point Program

Through the “Tipping Point” solicitation, NASA seeks industry-developed space technologies that can foster the development of commercial space capabilities and benefit future NASA missions. A technology is considered at a tipping point if an investment in a demonstration will significantly mature the technology, increase the likelihood of infusion into a commercial space application, and bring the technology to market for both government and commercial applications. The public-private partnerships established through Tipping Point selections combine NASA resources with an industry contribution of at least 25% of the program costs, shepherding the development of critical space technologies while also saving the agency, and American taxpayers, money.

Source link

0
Continue Reading

Space

Cobham Advanced Electronic Solutions launches industry’s highest density NAND flash memory module for space applications

Cobham Advanced Electronic Solutions launches industrys highest density NAND flash

(21 October 2020 – Cobham) Cobham Advanced Electronic Solutions (CAES) today announced the industry’s highest density NAND flash memory device for a range of demanding space applications.

The 4 terabit (Tb) triple-level cell (TLC), NAND Flash Memory Module delivers 32 times the density of the closest competing device while fitting into the same industry-standard 12mm x 18mm plastic-encapsulated microcircuit (PEM) package. With access to unparalleled storage capacity, designers can significantly increase sensor and digital signal processing in applications such as solid-state drives and recorders, reconfigurable computing systems, imaging and communications data buffering applications.

New CAES UT81NDQ512G8T delivers highest density NAND flash memory module for space applications (courtesy: Cobham)

“Our 4Tb NAND Flash Memory Module delivers an order of magnitude boost in memory density at lower power and without any increase in package size,” said Kevin Jackson, vice president, space systems, Cobham Advanced Electronic Solutions. “This directly improves the performance and capability of spacecraft instruments, for example, by increasing the signal fidelity and resolution of satellite imaging equipment. At the same time, our tightly-controlled supply chain and extensive testing processes mean that designers no longer have to up-screen commercial flash memory solutions in the hope of finding radiation-tolerant components.”

The new module performs up to 667 mega-transfers per second (MT/s) and is compliant with both Open NAND Flash Interface (ONFI) 4.0 and JEDEC NAND Flash Interoperability (JESD230C) specifications. While aerospace designers must screen commercial-grade NAND flash to estimate radiation tolerance and operational lifetime, the new CAES radiation-assured flash modules undergo extensive pre-testing. This includes Total Ionizing Dose (TID) and Single-Event Effects (SEE) characterization on a wafer lot-by-lot basis to ensure optimum radiation hardness. To maximize quality control across its manufacturing supply chain, CAES also applies Parts, Materials and Process (PMaP) failure-mode analysis to monitor for potential variations in the semiconductor fabrication process.

The UT81NDQ512G8T, 4Tb NAND flash module supports NV-DDR3 I/O (667 MT/s), NV-DDR2 I/O (533 MT/s), asynchronous I/O (50 MT/s) speeds and TLC endurance of 3,000 program/erase cycles. The module operates across +2.7 – +3.6V input and +1.14 – +1.26V or +1.7 – +1.95V output voltage ranges and specified to a temperature range of -40°C to +85°C. The 132-ball BGA module is available now in engineering units, with flight models to be released in the second quarter of 2021.

CAES also provides other technologies for commercial, civil, military, and other government spacecraft. With a space pedigree spanning nearly 40 years, CAES offers a full range of solutions for the world’s leading launch vehicles, satellites and space exploration missions. Key capabilities include radiation hardened and high reliability microelectronics, application specific integrated circuits (ASIC), electronic manufacturing services, motion control and positioning, antennas and apertures, radiation effects testing, RF, microwave and millimeter wave microelectronics, motion control devices, power solutions, intellectual property cores, avionic solutions and LEON/SPARC processors.

About Cobham Advanced Electronic Solutions

Cobham Advanced Electronic Solutions is the largest provider of analog and radiation hardened technology for the United States aerospace and defense industry. With a broad portfolio of off-the-shelf and customized RF, microwave and high reliability microelectronic products and subsystems, CAES offers a complete range of solutions for the entire signal chain from aperture to digital conversion.

Source link

0
Continue Reading

Space

Ovzon introduces Ovzon T6, a new portable satellite terminal

Ovzon introduces Ovzon T6 a new portable satellite terminal

(23 October 2020 – Ovzon) The new Ovzon T6 terminal is based on Ovzon’s satellite terminal expertise and includes new ground-breaking antenna technology, featuring automatic polarization adjustment.

The terminal is lighter and smaller than the present industry standard, Ovzon T5, thus pushing mobility further.

Ovzon’s T6 terminal (courtesy: Ovzon)

With 50 Mbps transmit and receive capabilities in a laptop sized format the new Ovzon T6 is the world smallest and lightest terminal with such performance, with the Ovzon T5 as a close second. The all-in-one rugged design, fully integrated, is compact without sacrificing performance. The weight is only 6 kg and the form factor makes it very easy to hand carry.

The patented Ovzon antenna with its electrical polarization removes the need for third axis mechanical polarization adjustment truly making it is as easy to use as an L-band terminal.

The intuitive graphical interface gives the user complete control through the built-in display or with any smartphone, tablet or laptop.

The terminal, that is IP 67 protected, is designed for use in extreme weather conditions, thus meeting the most demanding user needs.

”The Ovzon T6 is a giant leap forward compared with its successful predecessor, the industry standard Ovzon T5, developed and introduced in 2014. We are excited to bring this new Ovzon T6 terminal to the market as we approach the launch of our own satellite, Ovzon 3, at the end of 2021. New, capable terminals are important to further enhance our coming service and offering on Ovzon 3”, says Magnus René, CEO of Ovzon.

Ovzon is revolutionizing mobile broadband via satellite providing global coverage with the highest bandwidth through the smallest terminals. Founded in 2006, Ovzon develops end-to-end solutions meeting the growing demand of mobile broadband connectivity for customers with high performance requirements.

Ovzon’s combination of advanced proprietary satellite technology and unique ultra-small terminals answers the needs for mobile users to connect anywhere and transmit large amounts of data. Customers include Government, Defense, Media, Maritime, Aviation and NGOs using highly mobile platforms. Our dedicated and experienced team ensures a premium service for our demanding global customers.

The company has offices in Stockholm in Sweden and Bethesda (MD) and Tampa (FL) in the United States. Ovzon is publicly listed on Nasdaq First North Growth Market

Source link

0
Continue Reading

Trending