Connect with us

(21 September 2020 – NASA Goddard) It appears some pieces of asteroid Vesta ended up on asteroid Bennu, according to observations from NASA’s OSIRIS-REx spacecraft.

The new result sheds light on the intricate orbital dance of asteroids and on the violent origin of Bennu, which is a “rubble pile” asteroid that coalesced from the fragments of a massive collision.

“We found six boulders ranging in size from 5 to 14 feet (about 1.5 to 4.3 meters) scattered across Bennu’s southern hemisphere and near the equator,” said Daniella DellaGiustina of the Lunar & Planetary Laboratory, University of Arizona, Tucson. “These boulders are much brighter than the rest of Bennu and match material from Vesta.”

During spring 2019, NASA’s OSIRIS-REx spacecraft captured these images, which show fragments of asteroid Vesta present on asteroid Bennu’s surface. The bright boulders (circled in the images) are pyroxene-rich material from Vesta. Some bright material appear to be individual rocks (left) while others appear to be clasts within larger boulders (right). (courtesy: NASA/Goddard/University of Arizona)

“Our leading hypothesis is that Bennu inherited this material from its parent asteroid after a vestoid (a fragment from Vesta) struck the parent,” said Hannah Kaplan of NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Then, when the parent asteroid was catastrophically disrupted, a portion of its debris accumulated under its own gravity into Bennu, including some of the pyroxene from Vesta.”

DellaGiustina and Kaplan are primary authors of a paper on this research appearing in Nature Astronomy September 21.

The unusual boulders on Bennu first caught the team’s eye in images from the OSIRIS-REx (Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer) Camera Suite (OCAMS). They appeared extremely bright, with some almost ten times brighter than their surroundings. They analyzed the light from the boulders using the OSIRIS-REx Visible and Infrared Spectrometer (OVIRS) instrument to get clues to their composition. A spectrometer separates light into its component colors. Since elements and compounds have distinct, signature patterns of bright and dark across a range of colors, they can be identified using a spectrometer. The signature from the boulders was characteristic of the mineral pyroxene, similar to what is seen on Vesta and the vestoids, smaller asteroids that are fragments blasted from Vesta when it sustained significant asteroid impacts.

Of course it’s possible that the boulders actually formed on Bennu’s parent asteroid, but the team thinks this is unlikely based on how pyroxene typically forms. The mineral typically forms when rocky material melts at high-temperature. However, most of Bennu is composed of rocks containing water-bearing minerals, so it (and its parent) couldn’t have experienced very high temperatures. Next, the team considered localized heating, perhaps from an impact. An impact needed to melt enough material to create large pyroxene boulders would be so significant that it would have destroyed Bennu’s parent-body. So, the team ruled out these scenarios, and instead considered other pyroxene-rich asteroids that might have implanted this material to Bennu or its parent.

Observations reveal it’s not unusual for an asteroid to have material from another asteroid splashed across its surface. Examples include dark material on crater walls seen by the Dawn spacecraft at Vesta, a black boulder seen by the Hayabusa spacecraft on Itokawa, and very recently, material from S-type asteroids observed by Hayabusa2 at Ryugu. This indicates many asteroids are participating in a complex orbital dance that sometimes results in cosmic mashups.

As asteroids move through the solar system, their orbits can be altered in many ways, including the pull of gravity from planets and other objects, meteoroid impacts, and even the slight pressure from sunlight. The new result helps pin down the complex journey Bennu and other asteroids have traced through the solar system.

Based on its orbit, several studies indicate Bennu was delivered from the inner region of the Main Asteroid Belt via a well-known gravitational pathway that can take objects from the inner Main Belt to near-Earth orbits. There are two inner Main Belt asteroid families (Polana and Eulalia) that look like Bennu: dark and rich in carbon, making them likely candidates for Bennu’s parent. Likewise, the formation of the vestoids is tied to the formation of the Veneneia and Rheasilvia impact basins on Vesta, at roughly about two billion years ago and approximately one billion years ago, respectively.

“Future studies of asteroid families, as well as the origin of Bennu, must reconcile the presence of Vesta-like material as well as the apparent lack of other asteroid types. We look forward to the returned sample, which hopefully contains pieces of these intriguing rock types,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona in Tucson. “This constraint is even more compelling given the finding of S-type material on asteroid Ryugu. This difference shows the value in studying multiple asteroids across the solar system.”

The spacecraft is going to make its first attempt to sample Bennu in October and return it to Earth in 2023 for detailed analysis. The mission team closely examined four potential sample sites on Bennu to determine their safety and science value before making a final selection in December 2019. DellaGiustina and Kaplan’s team thinks they might find smaller pieces of Vesta in images from these close-up studies.

The research was funded by the NASA New Frontiers Program. The primary authors acknowledge significant collaboration with the French space agency CNES and Japan Society for the Promotion of Science Core-to-core Program on this paper. NASA’s Goddard Space Flight Center in Greenbelt, Maryland provides overall mission management, systems engineering, and the safety and mission assurance for OSIRIS-REx. Dante Lauretta of the University of Arizona, Tucson, is the principal investigator, and the University of Arizona also leads the science team and the mission’s science observation planning and data processing. The late Michael Drake of the University of Arizona pioneered the study of vestoid meteorites and was the first principal investigator for OSIRIS-REx. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington. NASA is exploring our Solar System and beyond, uncovering worlds, stars, and cosmic mysteries near and far with our powerful fleet of space and ground-based missions.

Source link

0

Space

RUAG Space has developed a new powerful computer for satellites

RUAG Space has developed a new powerful computer for satellites

(1 December 2020 – RUAG Space) RUAG Space has developed a new powerful computer for satellites called “Lynx”.

The development was achieved with the help of a contract from the European Space Agency’s program of Advanced Research in Telecommunications Systems (ARTES) and has been done at RUAG Space in Gothenburg, Sweden. “Our computer contains an extreme amount of power”, explains Anders Linder, Senior Vice President Electronics at RUAG Space. Lynx is 250 times more powerful than the normal On Board Computers, which RUAG currently delivers to ESA programs.

Lynx Single Board Computer (courtesy: RUAG Space)

Computing power for Artificial Intelligence

“We have been very early with this development. This year, we are seeing that Artificial Intelligence and Machine Learning is starting to arrive in space development programs and now we have a computer ready that perfectly matches the requirements of these customers”, says Anders Linder. “Customers who want to do Machine Learning in space need a lot of computing power – which our computer can provide.” The Lynx On Board Computer will be qualified for space until end of 2021.

High performance, long life

The Lynx Single Board Computer is designed for a long life in any satellite orbit (e.g. 15 years in geostationary earth orbit) or spacecraft trajectory. The computer offers a high-performance processor, which is provided by an ARM processor delivering 30000 DMIPS (short for Dhrystone MIPS, a computing benchmark). “That is a huge leap forward in processing performance for spaceborne computers”, adds Linder. A powerful FPGA (field-programmable gate array) offers flexibility in terms of communication, interface and processing capability. The computer can be used on the platform or in the payload. For its entire electronics portfolio RUAG Space offers a direct technical interface to U.S. clients in its office in Denver, Colorado.

About RUAG Space

RUAG Space is the leading supplier to the space industry in Europe and has a growing presence in the United States. In total, RUAG Space has about 1,300 employees across six countries. RUAG Space develops and manufactures products for satellites and launch vehicles—playing a key role both in the institutional and commercial space market.

About RUAG International

RUAG International is a Swiss technology group focusing on the aerospace industry. Based in Zurich (Switzerland) and with production sites in 14 countries, the company is divided into four areas: Space, Aerostructures, MRO International and Ammotec. With its strategic focus on aerospace, the company will consist of segments, Aerostructures and Space, in the medium term. RUAG Space is Europe’s leading supplier of products used in the aerospace industry. RUAG Aerostructures is a global first-tier supplier in aircraft structure construction. RUAG International employs around 6,000 people.

Source link

0
Continue Reading

Space

Origami antenna springs up for small satellites

Origami antenna springs up for small satellites

(1 December 2020 – ESA) A novel helical antenna that sprang from a container the size of a tuna can is now operational in orbit. Developed by Oxford Space Systems in partnership with ESA, this origami-inspired antenna is equal in length to the shoebox-sized satellite hosting it, part of a growing constellation of nanosatellites providing Internet of Things services around the globe.

This latest operational satellite from UK company Lacuna Space, was launched on 28 September into low Earth orbit. After launch, it underwent a series of in-orbit tests to establish it as part of Lacuna’s Internet of Things network.

As a 3-unit ‘CubeSat’ built up from standardised 10-cm boxes, the satellite is smaller and cheaper than traditional satellites, but can still pick up signals from battery powered ground-based sensors, small enough to hold in the palm of a hand. The mission is targeting Internet of Things applications such as agricultural and environmental monitoring as well as equipment and freight tracking – aided by its high-performance helical antenna.

This new antenna took shape through an ESA R&D project, supported by the UK Space Agency through ESA’s General Support Technology Programme (GSTP), preparing promising technologies for space and the open market.

CubeSat with helical antenna (courtesy: Oxford Space Systems)

origami 2

Vibration testing of helical antenna (courtesy: Oxford Space Systems)

origami 3

Test deployment (courtesy: Oxford Space Systems)

“The Internet of Things is going to be one of the catalysts for the green revolution we all want to see – helping us monitor everything from air and water quality, to assessing pollution levels around factories, rivers and cities,” remarks UK Space Agency Chief Executive Graham Turnock. “These green technologies are being made possible by cutting edge inventions by UK space companies, like this new Oxford Systems antenna.”

“Until this project, no European-made antenna of this kind was commercially available,” explains project technical officer Benedetta Fiorelli of ESA’s Antennae & Sub-mm Waves section.

“Having identified this gap in the market we proposed addressing it to various funding schemes, and it was GSTP that gave us the chance to take the idea forward. The result, little more than a year after the project started, is a tangible product already operating in space.”

CubeSats are growing in popularity because they draw maximum benefit from the latest miniaturised commercial-off-the-shelf components, to do more with less. But antennas are one satellite subsystem that cannot easily be shrunk down in size.

“We hit hard physical laws that link the size of the antenna’s radiating element with the frequency being used,” adds Benedetta. “So it becomes a challenge to accommodate the antenna aboard a small platform and still do useful work. For instance many CubeSats use simple thin wires antennas deploying from satellite bodies.

“But their performance is not optimal for Internet of Things type applications. Helical antennas are an inherently flexible design with many more parameters that can be tuned precisely as required – the antenna radius, number of spirals, pitch angle and so on.”

Founded in 2013 and based at ESA’s Harwell space campus, Oxford Space Systems has its focus on small, light satellite booms and antennas, to be folded away tightly before launch then spring to full size in orbit, origami-like.

“When we started working on deployable helical antennas we looked at which companies might be interested in that, and Oxford Space Systems was high on the list,” says Benedetta. “We engaged on the GSTP side while the company gained the support of their national ESA delegation, allowing the project to happen.

“It’s a good example of the role ESA should play: we identify a technology gap while industry spots a market opportunity, then we support industry in responding to it. The bulk of the work was done by Oxford Space Systems, including physical properties, radio frequency and deployment testing – slowed down somewhat by this year’s COVID-19 restrictions.”

Midway through the project, the company found a customer for their product, in the shape of Lacuna Space, a Harwell neighbour. Since then a second antenna has also flown, aboard another Lacuna CubeSat launched from India earlier this month.

“Even if it was in our plan since the beginning, I was surprised when they told me,” says Benadetta. “Activity sped up significantly during summer due to this flight opportunity,. In space terms that’s a fast turnaround to go from starting a project to a product working in space, so all involved are proud of it.”

Sean Sutcliffe, CEO of Oxford Space Systems, comments: “This represents a key milestone for OSS as it continues to execute the strategy to be the leading global deployable antenna company for space. Not only is this our first successful deployment of an antenna, but our second successful hardware deployment this year and our fourth in total. We continue to develop and deliver our range of antenna products which give leading performance capabilities with low launch mass and small stowage volumes.”

The satellite platform and early operations have been supplied by nanosatellite integrator NanoAvionics, with the payload developed and tested by Lacuna Space.

Source link

0
Continue Reading

Space

Thales Alenia Space puts on track its Space Inspire product line

Thales Alenia Space puts on track its Space Inspire product

(27 November 2020 – Thales) Thales Alenia Space has announced that a major milestone for Space Inspire (INstant SPace In-orbit REconfiguration) development has been achieved by the accomplishment of the Preliminary Design Review (PDR).

Thales Alenia Space is developping this innovative product line with the aim to allow seamless telecommunication mission and services reconfiguration, instant in-orbit adjustment to the demand, outstanding flexibility for video broadcasting and broadband connectivity services while maximizing the efficiency & effective use of the satellite resources.

(courtesy: Thales Alenia Space /Briot)

This product line is supported by France’s space agency (CNES) with which a contract for satellite system engineering and development for phase CD activities has just entered into force in the frame of Space Inspire PIA (Plan d’Investissement d’Avenir), and by the European Space Agency’s through a dedicated Partnerships Project contract which has also entered into force and which will develop several building blocks outside France within an extensive European supply chain.

Space Inspire product line will embark major innovations :

  • A new design and architecture to fully fit new satellites communication environment, in particular regarding flexible payload and multi launches capability;
  • A new industrial approach enabling series production designed to lower cost satellites and reduced procurement schedule;
  • Major breakthroughs with disruptive technologies to allow European industries to take the lead on major innovations.

Following this Preliminary Design Review, Space Inspire product line is now entering into final design and qualification phases involving an industrial consortium all across Europe.

“We are delighted to put on track our Space Inspire product line thanks to the fruitful partnership and strong involvement of all the industries and agencies teams. Mixing extremely high capacity, unique agility, in-orbit reconfiguration, flexible coverage, this solution is perfectly adapted to operators’ expectations in the evolving telecommunication market” , declared Marc-Henri Serre, EVP Telecommunications at Thales Alenia Space.

“Space Inspire is based on advanced technologies both for payload and for platform with an important foot print in France. It will offer full in-orbit flexibility together with very attractive capacity and cost. CNES is strongly involved in the development of this new satellite generation since the preliminary definition phase, and will manage the satellite system phase CD contract for the french Investment Plan for the Future (PIA). The new product line should also benefit from building blocks developpment outside France through ESA coordination”, declared Caroline Laurent, Director of Orbital Systems at CNES.

Elodie Viau, Director of Telecommunications and Integrated Applications at ESA, says: “The next generation of satellites built as part of Space Inspire will be able to adapt almost instantly to customer demands. ESA is proud to support the European and Canadian space industries to develop innovative satellites for the competitive global telecommunications market. I congratulate all the Thales Alenia Space, CNES and ESA teams for their hard work and looking for the success of this project.”

About Thales Alenia Space

Drawing on over 40 years of experience and a unique combination of skills, expertise and cultures, Thales Alenia Space delivers cost-effective solutions for telecommunications, navigation, Earth observation, environmental management, exploration, science and orbital infrastructures. Governments and private industry alike count on Thales Alenia Space to design satellite-based systems that provide anytime, anywhere connections and positioning, monitor our planet, enhance management of its resources, and explore our Solar System and beyond. Thales Alenia Space sees space as a new horizon, helping to build a better, more sustainable life on Earth. A joint venture between Thales (67%) and Leonardo (33%), Thales Alenia Space also teams up with Telespazio to form the parent companies’ Space Alliance, which offers a complete range of services. Thales Alenia Space posted consolidated revenues of approximately 2.15 billion euros in 2019 and has around 7,700 employees in nine countries.

Source link

0
Continue Reading

Trending