Connect with us

(3 September 2020 – exactEarth) exactEarth has announced the successful launch of the ESAIL microsatellite.

Developed under ESA’s ARTES Partnership Project for global ship tracking, the ESAIL satellite was launched September 3rd onboard the Arianespace Vega (VV16) flight, from Europe’s spaceport in Kourou, French Guiana.

ESAIL satellite mounted on Vega’s small satellite dispenser prior to launch (courtesy: Arianespace)

The satellite will undergo commissioning testing over the next few months and then will be brought into service to provide advanced high-performance vessel detection and tracking capability as part of exactEarth’s industry-leading global constellation of more than 70 high performance automatic identification system (AIS) satellites providing real time monitoring of the global shipping fleet.

VV16 is Arianespace’s first Vega Small Spacecraft Mission Service (SSMS) rideshare flight that injected a total of 53 satellites into orbit. At approximately 52 minutes after launch, ESAIL was released into a sun-synchronous orbit with Local Time at Descending Node (LTDN) of 10:30 am at an altitude of 515 km.

ESAIL is a high-performance microsatellite, built by LuxSpace with the support of the Luxembourg Space Agency under an ESA Partnership Project with exactEarth and the support of the Canadian Space Agency. It will track ships worldwide by detecting messages that ships radio-broadcast via AIS. As part of exactEarth’s Satellite-AIS constellation, ESAIL will provide AIS data for the monitoring of maritime traffic on a global basis. It will improve fishery monitoring, fleet management, environmental protection, and security monitoring – making the seas safer.

The first contact with the ESAIL satellite was successfully made by the ESAIL project team within hours after launch. The project team, consisting of team members from exactEarth (mission operator and owner), LuxSpace (prime contractor) and the European Space Agency (project sponsor) have gained control of the satellite, which is in good health. In the coming days and weeks, the satellite will undergo commissioning and in-orbit testing prior to being put into service as part of exactEarth’s Satellite-AIS constellation. The ESAIL satellite is designed for a mission life of approximately four years.

“We are very excited to add this advanced technology satellite to the exactEarth constellation,” said Peter Mabson exactEarth CEO. “ESAIL incorporates advanced antenna and receiver designs which, together with exactEarth’s advanced decollision processing technology is expected to set a new standard for Satellite-AIS vessel detection. I would like to thank ESA, the CSA and the Luxspace-led European satellite manufacturing team for helping to achieve this important milestone. Onwards and upwards!”

About exactEarth

exactEarth is a leading provider of global maritime vessel data for ship tracking and maritime situational awareness solutions. Since its formation in 2009, exactEarth has pioneered a powerful new method of maritime surveillance called Satellite AIS and has delivered to its clients a view of maritime behaviours across all regions of the world’s oceans unrestricted by terrestrial limitations. exactEarth’s second-generation constellation, exactViewTM RT, securely relays satellite-detected AIS vessel signals from any location on the earth’s surface to the ground in seconds – thus enabling global real-time vessel tracking. This unique capability consists of 58 advanced satellite payloads designed and built by L3Harris Technologies, Inc. under agreement with exactEarth and that are hosted onboard the Iridium NEXT constellation of satellites.

Source link

0

Space

OSIRIS-REx In the midst of sample stowage

OSIRIS REx In the midst of sample stowage

(28 October 2020 – NASA Goddard) Yesterday, NASA’s OSIRIS-REx mission successfully placed the spacecraft’s sample collector head into its Sample Return Capsule (SRC).

(courtesy: NASA)

The first image shows the collector head hovering over the SRC after the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) arm moved it into the proper position for capture. The second image shows the collector head secured onto the capture ring in the SRC. Both images were captured by the StowCam camera.

Today, after the head was seated into the SRC’s capture ring, the spacecraft performed a “backout check,” which commanded the TAGSAM arm to back out of the capsule. This maneuver is designed to tug on the collector head and ensure that the latches – which keep the collector head in place – are well secured. Following the test, the mission team received telemetry confirming that the head is properly secured in the SRC.

Before the sampler head can be sealed into the SRC, two mechanical parts on the TAGSAM arm must first be disconnected – these are the tube that carried the nitrogen gas to the TAGSAM head during sample collection and the TAGSAM arm itself. Over the next several hours, the mission team will command the spacecraft to cut the tube and separate the collector head from the TAGSAM arm. Once the team confirms these activities have executed as planned, they will command the spacecraft to seal the SRC.

StowCam, a color imager, is one of three cameras comprising TAGCAMS (the Touch-and-Go Camera System), which is part of OSIRIS-REx’s guidance, navigation, and control system. TAGCAMS was designed, built and tested by Malin Space Science Systems; Lockheed Martin integrated TAGCAMS to the OSIRIS-REx spacecraft and operates TAGCAMS.

Source link

0
Continue Reading

Space

Rocket Lab successfully launches 15th mission, deploys satellites for Planet, Canon Electronics

Rocket Lab successfully launches 15th mission deploys satellites for Planet

(29 October 2020 – Rocket Lab) Rocket Lab has successfully launched its 15th Electron mission and deployed Earth-imaging satellites for Planet and Spaceflight Inc. customer Canon Electronics.

The mission was Rocket Lab’s fifth for this year, making Electron the second-most frequently flown U.S. launch vehicle in 2020.

(courtesy: Rocket Lab)

The ‘In Focus’ mission launched from Rocket Lab Launch Complex 1 on New Zealand’s Māhia Peninsula at 21:21 UTC, 28 October 2020. The Electron launch vehicle successfully deployed ten commercial small satellites to a 500km circular orbit, bringing the total number of payloads deployed by Rocket Lab to 65.

The payloads on ‘In Focus’ included the latest flock of Planet’s Earth-imaging SuperDove small satellites, each integrated with and deployed from Rocket Lab’s Maxwell satellite dispensers. Flock 4e’ bolsters Planet’s constellation of Earth-observation satellites already on orbit providing medium-resolution global coverage and near-daily revisit. Canon Electronic’s mission objective with their CE-SAT-IIB microsatellite is to demonstrate the company’s Earth-imaging capability with a middle-size telescope equipped with an ultra-high sensitivity camera to take night images of the Earth and small size telescopes suitable for CubeSat use.

“Congratulations to Planet on the addition of their latest SuperDoves to their constellation and to the team at Canon Electronics on the deployment of their latest tech demonstration satellite,” said Rocket Lab founder and CEO, Peter Beck. “Electron has once again delivered a smooth ride to orbit and precise deployment for our individual rideshare customers. Continuing to launch in the face of global disruption and adversity, while at the same time becoming the second-most frequently flown U.S. launch vehicle this year, is the latest display our dedication in providing ongoing, easy access to space for our customers.

Source link

0
Continue Reading

Space

OSIRIS-REx spacecraft collects significant amount of asteroid

OSIRIS REx spacecraft collects significant amount of asteroid

(23 October 2020 – NASA) Two days after touching down on asteroid Bennu, NASA’s OSIRIS-REx mission team received on Thursday, Oct. 22, images that confirm the spacecraft has collected more than enough material to meet one of its main mission requirements – acquiring at least 2 ounces (60 grams) of the asteroid’s surface material.

The spacecraft captured images of the sample collector head as it moved through several different positions. In reviewing these images, the OSIRIS-REx team noticed both that the head appeared to be full of asteroid particles, and that some of these particles appeared to be escaping slowly from the sample collector, called the Touch-And-Go Sample Acquisition Mechanism (TAGSAM) head. They suspect bits of material are passing through small gaps where a mylar flap – the collector’s “lid” – is slightly wedged open by larger rocks.

Captured by the spacecraft’s SamCam camera on Oct. 22, 2020, this series of three images shows that the sampler head on NASA’s OSIRIS-REx spacecraft is full of rocks and dust collected from the surface of the asteroid Bennu. They show also that some of these particles are slowly escaping the sampler head. Analysis by the OSIRIS-REx team suggests that bits of material are passing through small gaps where the head’s mylar flap is slightly wedged open. The mylar flap (the black bulge on the left inside the ring) is designed to keep the collected material locked inside, and these unsealed areas appear to be caused by larger rocks that didn’t fully pass through the flap. Based on available imagery, the team suspects there is plentiful sample inside the head, and is on a path to stow the sample as quickly as possible. (courtesy: NASA)

“Bennu continues to surprise us with great science and also throwing a few curveballs,” said Thomas Zurbuchen, NASA’s associate administrator for science at the agency’s headquarters in Washington. “And although we may have to move more quickly to stow the sample, it’s not a bad problem to have. We are so excited to see what appears to be an abundant sample that will inspire science for decades beyond this historic moment.”

The team believes it has collected a sufficient sample and is on a path to stow the sample as quickly as possible. They came to this conclusion after comparing images of the empty collector head with Oct. 22 images of the TAGSAM head after the sample collection event.

The images also show that any movement to the spacecraft and the TAGSAM instrument may lead to further sample loss. To preserve the remaining material, the mission team decided to forego the Sample Mass Measurement activity originally scheduled for Saturday, Oct. 24, and canceled a braking burn scheduled for Friday to minimize any acceleration to the spacecraft.

From here, the OSIRIS-Rex team will focus on stowing the sample in the Sample Return Capsule (SRC), where any loose material will be kept safe during the spacecraft’s journey back to Earth.

“We are working to keep up with our own success here, and my job is to safely return as large a sample of Bennu as possible,” said Dante Lauretta, OSIRIS-REx principal investigator at the University of Arizona in Tucson, who leads the science team and the mission’s science observation planning and data processing. “The loss of mass is of concern to me, so I’m strongly encouraging the team to stow this precious sample as quickly as possible.”

The TAGSAM head performed the sampling event in optimal conditions. Newly available analyses show that the collector head was flush with Bennu’s surface when it made contact and when the nitrogen gas bottle was fired to stir surface material. It also penetrated several centimeters into the asteroid’s surface material. All data so far suggest that the collector head is holding much more than 2 ounces of regolith.

OSIRIS-REx remains in good health, and the mission team is finalizing a timeline for sample storage. An update will be provided once a decision is made on the sample storage timing and procedures.

NASA’s Goddard Space Flight Center in Greenbelt, Maryland, provides overall mission management, systems engineering and the safety and mission assurance for OSIRIS-REx. Lockheed Martin Space in Denver built the spacecraft and is providing flight operations. Goddard and KinetX Aerospace of Tempe, Arizona, are responsible for navigating the OSIRIS-REx spacecraft. OSIRIS-REx is the third mission in NASA’s New Frontiers Program, which is managed by NASA’s Marshall Space Flight Center in Huntsville, Alabama, for the agency’s Science Mission Directorate in Washington.

Source link

0
Continue Reading

Trending