Connect with us

(3 August 2020 – Intelsat) Intelsat, operator of the world’s largest integrated satellite and terrestrial network, today announced that Peter B. Davidson has joined the company as Vice President of Global Government Affairs and Policy.

Based in the company’s McLean, Va. office, Davidson is responsible for leading the development of Intelsat’s government relations strategy globally, building relationships with individuals in the U.S. Congress and Administration, as well as international administrations and regulatory bodies that impact Intelsat’s business around the world. He will report to Intelsat’s Executive Vice President, General Counsel and Chief Administrative Officer Michelle Bryan.

Peter B. Davidson, Intelsat’s new Vice President of Global Government Affairs and Policy. (courtesy: Intelsat)

“Peter is a dynamic leader with a broad range of experience, and we look forward to working alongside him to further advance our near and long-term government affairs initiatives. We’re pleased to welcome him to the Intelsat family,” said Bryan.

Davidson brings more than 35 years of experience in government affairs, telecom and legal knowledge to his new role at Intelsat.

Most recently, Davidson served as Deputy Dean for Strategic Initiatives and Assistant Professor of Law, at the Antonin Scalia Law School at George Mason University. Before that, he served as General Counsel at the Department of Commerce, acting as the third most senior official and overseeing nearly 400 attorneys across all 13 of the Department’s bureaus.

Davidson also spent 14 years as the Senior Vice President of Federal and International Government Relations at Verizon Communications where he oversaw the company’s federal congressional relations, supervising a staff handling public policy issues, including telecommunications, technology, taxation, pension, labor, energy and health.

Davidson has a Juris Doctor from the University of Virginia School of Law in Charlottesville, Va., and a Bachelor of Arts degree in political science with a concentration in political economy from Carleton College in Northfield, Minn.

About Intelsat

As the foundational architects of satellite technology, Intelsat operates the world’s largest and most advanced satellite fleet and connectivity infrastructure. We apply our unparalleled expertise and global scale to connect people, businesses, and communities, no matter how difficult the challenge. Intelsat is uniquely positioned to help our customers turn possibilities into reality – transformation happens when businesses, governments, and communities use Intelsat’s next-generation global network and managed services to build their connected future.

Source link

0

Space

Thales Alenia Space to provide key technology to HERA, ESA’s planetary defence mission

Thales Alenia Space to provide key technology to HERA ESAs

(15 September 2020 – Thales) Thales Alenia Space has been selected by OHB, prime contractor, and the European Space Agency (ESA), to provide the Communications system as well as the Power Conditioning and Distribution Unit (PCDU) for the HERA mission.

Named after the Greek goddess of marriage, HERA, European contribution to AIDA international cooperation (Asteroid Impact & Deflection Assessment, the first planetary defence mission of humanity), aims to find out if we are capable of deflecting an asteroid and prevent it from hitting Earth. AIDA consists of two missions, NASA’s Double Asteroid Redirection Test (DART), a kinetic impactor designed to deviate the orbit of the smaller of the two Didymos asteroids, and ESA’s HERA inspector spacecraft, that will rendez-vous the Didymos target asteroid about 4 years after the DART impact. HERA, scheduled for launch in 2024, will travel for the first time in history to explore a binary asteroid system.

(courtesy: ESA)

The systems provided by Thales Alenia Space will be key to the mission, allowing to control and track the spacecraft from a distance up to 500 million kilometer far away, to send all the information gathered by HERA back to Earth and to perform radio science. Thales Alenia Space in Spain will be responsible for the X-band Communications System, leading an industrial consortium which includes Thales Alenia Space in Italy, responsible for the state-of-art Deep Space Transponder that, exploiting a flight-proven digital platform, will allow robust communication with the Ground Station, and Thales Alenia Space in Belgium, responsible for the Travelling Wave Tube Amplifiers (TWTA), among other companies. Thales Alenia Space in Belgium will also provide the PCDU, the electrical core of the spacecraft.

Eduardo Bellido, CEO of Thales Alenia Space in Spain, said: “It is exciting to be part of this historic experiment for humanity to protect the Earth against asteroid collisions. Our technology will deliver essential data to scientists to be able to establish a planetary defence strategy based on asteroids deflection, to prevent the threat of an impact on Earth. Landing on Titan, mapping the Universe with Herschel and Planck, hunting a comet with Rosetta and now preventing Earth against Asteroid, all so amazing and unimaginable challenges our company is so proud to face”.

HERA will send key information to Earth on the physical properties of Dimorphos, (including mass, size, shape, volume, density, porosity, size distribution of surface material) to determine the momentum transfer efficiency of the impact and to allow scaling it to different asteroids; details of the crater formed by the impact to improve our understanding of the cratering process; and observations on the subtle dynamic effects that are difficult to detect from ground-based observations.

thales 2

(courtesy: ESA)

Thales Alenia Space is the European leader in satellite communication systems, in particular with a strong heritage in Spain in TT&C and data transmission systems for all type of space missions, including missions in low Earth Orbit (Sentinel 1-2-3, Ingenio, FLEX), geostationary orbit (GEO-KOMPSAT-2, MTG), lunar orbit (KPLO, NOVA-C, Viper) and space telescopes orbiting around the L2 Lagrangian point (Herschel, Planck, Euclid, WFIRST, PLATO). Furthermore, Thales Alenia Space, through its Italian footprint, is a worldwide leader for Integrated Transponders operating in different frequency bands and for different applications, i.e.: Earth Observation (COSMO constellation), Secure Communications, Solar System exploration (Rosetta, Mars Express, Venus Express, BepiColombo, JUNO, ExoMars, Solar Orbiter, JUICE, Mars Moon Explorer), and Scientific missions in Lagrangian orbit (Gaia, Lisa Pathfinder, JWST, EUCLID, PLATO).

Saving our planet

Asteroids are bodies originated in the young stars nebulae that never grew to planets, formed of rock and metal. Among them, those that have an orbit that brings them close to Earth, known as near-Earth asteroids, pose a risk of hitting the Earth. There are plenty of such bodies in our Solar system, from tiny little ones measuring a few meters (there’s 40-50 millions of them) up to larger ones, measuring more than 1 km but much more scarce (there’s less than 1000 of them).

Neither the smaller near-Earth asteroids nor the larger ones pose a real threat to humanity. Small asteroids actually hit the Earth quite frequently (every two weeks) with no consequences. The larger ones, although potentially dangerous, are well-known and tracked, and it takes millions of years to have one of them hitting the Earth. Actually, a 10km asteroid impact is the most accepted theory of the Cretaceous extinction around 66 million years ago, ending with three-quarters of the plant and animal species, among others the dinosaurs. Another famous asteroid impact was Tunguska in Siberia in 1908, presumably belonging to the 30 to 100 meter class, which hit the Earth every 10 years.

It is the mid-sized class asteroids of more than 100 meters the ones we need to worry about, such as the asteroid HERA will explore. There are about 30,000 near-Earth asteroids of the 100 to 300 meter size class, 82% of them still to be spotted, hitting the Earth every 10,000 years. The impact energy of such an asteroid is equivalent to around 50 megatons of TNT, the power of a “Tsar Bomba”. The effect of such an impact would be devastating if it reached a populated area, capable to destroy an entire city or to create a tsunami if it impacted a sea.

The Didymos binary asteroid system is prototypical of the thousands of asteroids that pose a hazardous risk of impact to our planet. Around the main body, 780 meter in diameter (the size of a mountain), orbits a 160 meter moonlet, Dimorphos, similar in size to the great pyramid of Giza. HERA will target this moonlet, which will become the smallest asteroid ever visited by a probe.

The DART spacecraft will be launched in July 2021 and is expected to hit the surface of Dimorphos on September 2022 at a speed of almost 7 kilometers per second, which is expected to modify its orbit around Didymos and create a substantial crater. Dimorphos will thus become the first object in the Solar System whose orbit and physical characteristics have been measurably modified by human effort.

The HERA spacecraft will reach the binary asteroid by the end of 2026, and during 6 months it will perform a detailed study mapping the impact crater caused by DART and measuring the mass and other physical properties of the asteroid to determine the effect of the impact on its orbit. Thus, the data provided by HERA will allow, for the first time, to validate and refine the numerical impact models at the asteroid scale, thus making this deflection technique ready for use for planetary defense if it were ever necessary to safeguard the Earth.

About Thales Alenia Space

Drawing on over 40 years of experience and a unique combination of skills, expertise and cultures, Thales Alenia Space delivers cost-effective solutions for telecommunications, navigation, Earth observation, environmental management, exploration, science and orbital infrastructures. Governments and private industry alike count on Thales Alenia Space to design satellite-based systems that provide anytime, anywhere connections and positioning, monitor our planet, enhance management of its resources, and explore our Solar System and beyond. Thales Alenia Space sees space as a new horizon, helping to build a better, more sustainable life on Earth. A joint venture between Thales (67%) and Leonardo (33%), Thales Alenia Space also teams up with Telespazio to form the parent companies’ Space Alliance, which offers a complete range of services. Thales Alenia Space posted consolidated revenues of approximately 2.15 billion euros in 2019 and has around 7,700 employees in nine countries.

Source link

0
Continue Reading

Space

Observations with the Herschel Space Observatory reveal the composition of the largest Uranian moons

Observations with the Herschel Space Observatory reveal the composition of

(14 September 2020 – Max Planck Institute for Astronomy) More than 230 years ago astronomer William Herschel discovered the planet Uranus and two of its moons. Using the Herschel Space Observatory, a group of astronomers led by Örs H. Detre of the Max Planck Institute for Astronomy now has succeeded in determining physical properties of the five main moons of Uranus.

The measured infrared radiation, which is generated by the Sun heating their surfaces, suggests that these moons resemble dwarf planets like Pluto. The team developed a new analysis technique that extracted the faint signals from the moons next to Uranus, which is more than a thousand times brighter. The study was published today in the journal Astronomy & Astrophysics.

The images show the position of the five largest Uranian moons and their orbits around Uranus on 12 July 2011 as seen by Herschel. Left: Calculated positions and orbits of the moons. The left side of the orbital plane is pointing towards us. The size of the objects is not shown to scale. Right: False-colour map of the infrared brightness at a wavelength of 70 µm after removal of the signal from the planet Uranus, measured with the PACS instrument of the Herschel Space Observatory. The characteristic shape of the signals, which resembles a three-leaf clover, is an artifact generated by the telescope. (courtesy: T. Müller (HdA)/Ö. H. Detre et al./MPIA)

To explore the outer regions of the Solar System, space probes such as Voyager 1 and 2, Cassini-Huygens and New Horizons were sent on long expeditions. Now a German-Hungarian research group, led by Örs H. Detre of the Max Planck Institute for Astronomy (MPIA) in Heidelberg, shows that with the appropriate technology and ingenuity, interesting results can also be achieved with observations from far away.

The scientists used data from the Herschel Space Observatory, which was deployed between 2009 and 2013 and in whose development and operation MPIA was also significantly involved. Compared to its predecessors that covered a similar spectral range, the observations of this telescope were significantly sharper. It was named after the astronomer William Herschel, who found infrared radiation in 1800. A few years earlier, he also discovered the planet Uranus and two of its moons (Titania and Oberon), which now have been explored in greater detail along with three other moons (Miranda, Ariel and Umbriel).

The discovery of the moons in the Herschel data was a coincidence

“Actually, we carried out the observations to measure the influence of very bright infrared sources such as Uranus on the camera detector,” explains co-author Ulrich Klaas, who headed the working group of the PACS camera of the Herschel Space Observatory at MPIA with which the images were taken. “We discovered the moons only by chance as additional nodes in the planet’s extremely bright signal.” The PACS camera, which was developed under the leadership of the Max Planck Institute for Extraterrestrial Physics (MPE) in Garching, was sensitive to wavelengths between 70 and 160 µm. This is more than a hundred times greater than the wavelength of visible light. As a result, the images from the similarly sized Hubble Space Telescope are about a hundred times sharper.

Cold objects radiate very brightly in this spectral range, such as Uranus and its five main moons, which – warmed by the Sun – reach temperatures between about 60 and 80 K (–213 to –193 °C).

“The timing of the observation was also a stroke of luck,” explains Thomas Müller from MPE. The rotational axis of Uranus, and thus also the orbital plane of the moons, is unusually inclined towards their orbit around the Sun. While Uranus orbits the Sun for several decades, it is mainly either the northern or the southern hemisphere that is illuminated by the Sun. “During the observations, however, the position was so favourable that the equatorial regions benefited from the solar irradiation. This enabled us to measure how well the heat is retained in a surface as it moves to the night side due to the rotation of the moon. This taught us a lot about the nature of the material,” explains Müller, who calculated the models for this study. From this he derived thermal and physical properties of the moons.

When the space probe Voyager 2 passed Uranus in 1986, the constellation was much less favourable. The scientific instruments could only capture the south pole regions of Uranus and the moons.

The moons resemble the dwarf planets at the edge of the Solar System

Müller found that these surfaces store heat unexpectedly well and cool down comparatively slowly. Astronomers know this behaviour from compact objects with a rough, icy surface. That is why the scientists assume that these moons are celestial bodies similar to the dwarf planets at the edge of the Solar System, such as Pluto or Haumea. Independent studies of some of the outer, irregular Uranian moons, which are also based on observations with PACS/Herschel, indicate that they have different thermal properties. These moons show characteristics of the smaller and loosely bound Transneptunian Objects, which are located in a zone beyond the planet Neptune. “This would also fit with the speculations about the origin of the irregular moons,” adds Müller. “Because of their chaotic orbits, it is assumed that they were captured by the Uranian system only at a later date.”

However, the five main moons were almost overlooked. In particular, very bright objects such as Uranus generate strong artifacts in the PACS/Herschel data, which cause some of the infrared light in the images to be distributed over large areas. This is hardly noticeable when observing faint celestial objects. With Uranus, however, it is even more pronounced. “The moons, which are between 500 and 7400 times fainter, are at such a small distance from Uranus that they merge with the similarly bright artifacts. Only the brightest moons, Titania and Oberon, stand out a little from the surrounding glare,” co-author Gábor Marton from Konkoly Observatory in Budapest describes the challenge.

Sophisticated data processing makes the initially invisible visible

This accidental discovery spurred Örs H. Detre to make the moons more visible so that their brightness could be reliably measured. “In similar cases, such as the search for exoplanets, we use coronagraphs to mask their bright central star,” Detre explains. “Herschel did not have such a device. Instead, we took advantage of the outstanding photometric stability of the PACS instrument.” Based on this stability and after calculating the exact positions of the moons at the time of the observations, he developed a method that allowed him to remove Uranus from the data. “We were all surprised when four moons clearly appeared on the images, and we could even detect Miranda, the smallest and innermost of the five largest Uranian moons,” Detre concludes.

observations 2

These images explain how the Uranian moons were extracted from the data. Left: The original image contains the infrared signals from Uranus and its five main moons, measured at a wavelength of 70 µm. Uranus is several thousand times brighter than a single moon. Its image is dominated by artifacts due to interference from the telescope and the camera. Titania and Oberon are barely visible. Center: Using these data, a sophisticated procedure created a model for the brightness distribution of Uranus alone. This is subtracted from the original image. Right: Finally, the signals of the moons remain after the subtraction. At the location of Uranus the not quite perfect extraction method slightly affects the result. (courtesy: Ö. H. Detre et al./MPIA)

“The result demonstrates that we don’t always need elaborate planetary space missions to gain new insights into the Solar System,“ co-author Hendrik Linz from MPIA points out. “In addition, the new algorithm could be applied to further observations which have been collected in large numbers in the electronic data archive of the European Space Agency ESA. Who knows what surprise is still waiting for us there?”

Publication

Ö. H. Detre, T. G. Müller, U. Klaas, et al.
Herschel-PACS photometry of the five major moons of Uranus
Astronomy & Astrophysics, 641, A76 (2020)

Source link

0
Continue Reading

Space

MSSS To provide science cameras for Janus asteroid mission

MSSS To provide science cameras for Janus asteroid mission

(14 September 2020 – Malin Space Scence Systems) Malin Space Science Systems (MSSS) has been selected to provide the science payloads for the two Janus spacecraft.

Last week, Janus was approved by NASA to proceed with final design of the mission hardware, including the MSSS cameras (called “JCam”).

The Janus principal investigator is Dr. Daniel Scheeres of the University of Colorado Boulder. The spacecraft will be built and operated by Lockheed Martin. The two Janus spacecraft will be launched in August 2022 on the same Falcon Heavy rocket as NASA’s Psyche spacecraft. They will fly by two small binary asteroids, 1991 VH and 1996 FG3, in March-April 2026.

An ECAM-M50 (Monochrome) with NFOV (Narrow Field of View) lens (left), ECAM-IR3 (right), and ECAM-DVR4 (center). JCam will appear similar to this flight camera system from another program, as JCam will use the same electronics with different lenses. Pocket knife for scale. (courtesy: Malin Space Science Systems)

msss 2

A rendering of the two Janus spacecraft showing the position of JCam. The apertures of the JCam visible and thermal IR cameras project from the inside of the spacecraft along its upper right edge. For scale, the deployed solar array span is a little less than 9 feet. (courtesy: Lockheed Martin)

Each spacecraft will carry a JCam system built by MSSS. JCam consists of an ECAM M50 visible camera and an ECAM IR3 thermal infrared camera, with a DVR4 processing/storage unit with 16 GB of flash memory. It will obtain images of the asteroid targets and also be used for spacecraft navigation and pointing during the flybys. Each complete JCam system weighs less than 3.2 kg and has a maximum power draw of less than 14 watts. These combined visible and thermal infrared imaging capabilities will enable JCam to characterize the current morphology of 1991 VH and 1996 FG3 and to constrain their evolution.

ECAM systems are flight-proven and currently operating on several missions, including NASA’s OSIRIS-REx asteroid sample-return spacecraft and Northrop-Grumman’s MEV-1 and MEV-2 satellite servicing missions. The development and production of the two JCam systems for Janus is being done under contract to Lockheed Martin for $5.8 million.

MSSS is also building the visible multispectral imaging science cameras for the Psyche mission, which will launch with Janus. Psyche is a NASA Discovery mission, led by Dr. Lindy Elkins-Tanton of Arizona State University and managed by NASA’s Jet Propulsion Laboratory. It will arrive at the main belt asteroid Psyche in 2026.

Dr. Michael Ravine, JCam project manager at MSSS, said, “We are pleased that CU and Lockheed Martin selected MSSS to provide the payload for the two Janus spacecraft. JCam will return high resolution images of these asteroids and map the temperatures of their surfaces. It also means that a single launch will be carrying three spacecraft, going to three different targets, each with two MSSS cameras. That’s a first for us, maybe a first for anybody.”

MSSS has a long history of building and operating science instruments for NASA spacecraft, most recently five cameras on the Perseverance Mars rover, launched in August 2020 and scheduled to land on Mars in February 2021. We are also currently operating three cameras orbiting Mars on Mars Odyssey and Mars Reconnaissance Orbiter, four on the surface of Mars on the Curiosity rover, and one orbiting Jupiter on Juno.

Source link

0
Continue Reading

Trending