Connect with us

(21 July 2020 – NASA Goddard) Storage is just as important aboard the International Space Station as it is on Earth and astronauts now have a “housing unit” in which they can store tools for use on the exterior of the space station.

On Dec. 5, 2019, a protective storage unit for robotic tools called Robotic Tool Stowage (RiTS) was among the items launched to station as part of SpaceX’s 19th commercial resupply services mission for NASA. As part of a spacewalk on July 21, NASA astronauts Robert Behnken and Chris Cassidy installed the “robot hotel” where the tools are stored to the station’s Mobile Base System (MBS), where it will remain a permanent fixture. The MBS is a moveable platform that provides power to the external robots. This special location allows RiTS to traverse around the station alongside a robot that will use the tools it stores.

The Mobile Base System moves on the Mobile Transporter rail car along truss rails covering the length of the space station. It provides a movable platform for Canadarm2 and Dextre and can access any of eight worksites that feature power connections. (courtesy: NASA)

nasas 7

RELL Engineering Development Unit (left) pictured alongside RiTS. (courtesy: NASA)

nasas 8

Astronauts Robert Behnken, Doug Hurley, and Chris Cassidy prepare RiTS for installation. (courtesy: NASA)

nasas 9

The Robotic External Leak Locator on the end of the Dextre robot in February 2017. (courtesy: NASA)

nasas 10

RiTS installed on the space station. (courtesy: NASA TV)

“RiTS provides thermal and physical protection for tools stored on the outside of station, not only freeing up room on board but also allowing the Canadian Space Agency’s Dextre robot to access them more quickly,” said RiTS Hardware Manager Mark Neuman.

The first step in the RiTS installation process involved preparing the unit inside the space station. The astronauts unpacked RiTS’ occupants from storage – two units of a tool called the Robotic External Leak Locator (RELL) – and affixed them inside RiTS’ aluminum housing.

“RELL is a great example how robots with the right tools can simplify life for astronauts,” said Neuman. “Dextre can use RELL to detect ammonia leaks, eliminating the need for astronauts to perform the same task during a spacewalk.”

The ability to locate and repair ammonia leaks efficiently is important since ammonia is used to operate station’s cooling system.

The installation of RiTS makes the leak location process much more streamlined. Before RiTS, the RELL tools were stored inside the station, and deploying RELL depended on airlock availability and involved waiting an additional 12 hours to allow for RELL’s gas analyzer to clear itself of internal gases. With RiTS, the only variable is Dextre’s availability, expediting the search for leaks.

After it was prepared on station, RiTS – loaded with the two RELL units – was sent outside with the spacewalking astronauts who attached it to the MBS. This was the first task during a spacewalk to upgrade International Space Station systems. The installation required the astronauts to mechanically attach RiTS to an available worksite socket then mate two electrical cables to unused power outlets on the MBS. The power connection was critical to enabling heaters within RiTS that keep the RELL tools from getting too cold.

Although RiTS will be used on the station, human-robot collaborations like this have the potential to be applied to other endeavors that involve human habitats in space, including Gateway.

RiTS was developed by NASA’s Exploration & In-space Services projects division at the agency’s Goddard Space Flight Center in Greenbelt, Maryland, in partnership with NASA’s Johnson Space Center in Houston.

Source link

0

Space

Preparations for next moonwalk simulations underway

Preparations for next moonwalk simulations underway

(23 September 2020 – NASA) NASA engineers are laying the foundation for the moonwalks the first woman and next man will conduct when they land on the lunar South Pole in 2024 as part of the Artemis program.

At the agency’s Johnson Space Center in Houston, teams are testing the tools and developing training approaches for lunar surface operations.

As part of a test series occurring in the Neutral Buoyancy Lab (NBL) at Johnson, astronauts in a demonstration version of the exploration spacesuit and engineers in “hard hat” dive equipment are simulating several different tasks crew could do on the surface of the Moon.

Teams are evaluating how to train for lunar surface operations during Artemis missions, in the Neutral Buoyancy Lab at Johnson Space Center in Houston. (courtesy: NASA)

preparations 2

NASA will use a range of facilities to prepare for mission to the Moon. (courtesy: NASA)

preparations 3

Teams are assessing how to use tools and spacesuits, among other activities, during lunar testing activities in the NBL. (courtesy: NASA)

“This early testing will help determine the best complement of facilities for hardware development and requirements for future Artemis training and missions,” said Daren Welsh, extravehicular activity test lead for these Artemis preparation test runs. “At the same time, we are going to be able to gather valuable feedback on spacewalk tools and procedures that will help inform some of the objectives for the missions.”

The tests are focused on evaluating Johnson’s facilities for Artemis spacewalk testing, development, and crew training. Astronauts are practicing a variety of tasks, including picking up samples of lunar regolith, examining a lunar lander, and planting an American flag. There are many fundamentals that the teams have to consider and work through, such as how crew might get up and down a ladder safely, how to swing a chisel safely, and how to conduct successful moonwalks in different lighting conditions than the Apollo-era moonwalks. The tests will inform future mission planning, including how many spacewalks to conduct during a mission, how long they’ll be, and how far away from a lander the crew will travel.

While NASA has extensive experience preparing astronauts for spacewalks in microgravity like those to construct and maintain the International Space Station over the past 20 years, preparing for Moon missions comes with different challenges.

“We can evaluate tools in a lab or the rock yard, but you can learn so much when you put a pressurized spacesuit on and have to work within the limitations of its mobility,” Welsh said. “These NBL runs are so valuable for understanding the human performance component and ensuring our astronauts are as safe as possible.”

In addition to testing in the NBL, teams also are using different analog environments to simulate lunar conditions. Tests are occurring at Johnson’s rock yard, a large, outdoor test area which simulates general features of the lunar surface terrain.

Rock yard testing is a critical analog environment for spacewalk tool development and operations. The interaction between the crewmembers and the Earth-based teams in mission control and the science control centers allows engineers to mature concepts of mission operations. The testing reveals spacewalking tool design improvements and helps formulate operational timelines. Analog environments allow iterations on designs to occur quickly such that the revisions can be reevaluated in subsequent tests.

“We have experience with space station, but we need to determine how we’re going to train the crew for surface operations during these specific missions,” Welsh said. “There is a lot of work to do to get the facilities ready to work for lunar missions and figure out how to facilitate the training.”

This collaborative effort is already paying dividends for the team as they are becoming more familiar with the surface operation concepts. As the tests continue, the team is expanding the scope of the testing, with plans to complete full lunar spacewalk timelines.

With the Artemis program, NASA will land the first woman and next man on the Moon in 2024, using innovative technologies to explore more of the lunar surface than ever before. We will collaborate with our commercial and international partners and establish sustainable exploration by the end of the decade. Then, we will use what we learn on and around the Moon to take the next giant leap – sending astronauts to Mars.

Source link

0
Continue Reading

Space

SpaceBridge rolls out Integrasys Satmotion facilitating the deployment of customer networks across Greece

SpaceBridge rolls out Integrasys Satmotion facilitating the deployment of customer

(21 September 2020 – Integrasys) SpaceBridge has successfully rolled out an ASAT-II Redundant Hub and over 100 sites across Hellas SAT.

To facilitate the deployment of the network and minimize staff time and efforts on-site, SpaceBridge selected Satmotion Pocket, Integrasys’s industry-leading Auto Commissioning tool. Satmotion Pocket is a VSAT auto-commissioning system that minimizes deployment time and effort while ensuring the highest quality and interference-free installation for optimal performance. It is a software-based solution that simplifies and guides installers by providing feedback on important key performance indicators (KPI) such as Copol, Xpol and Adjacent Satellite Interference, verifying that the antenna and receive/transmit chain of the solutions are optimally installed and allowing sites to generate revenue earlier.

(courtesy: Integrasys)

David Gelerman, President and CEO of Spacebridge; “Our goal at SpaceBridge is to ensure our customers can rapidly monetize upon the offering of their value-added services. The Satmotion Pocket by Integrasys proved very effective in that it allowed our partners to provide high-quality installations efficiently resulting in much faster deployment, saving time and resources, and delivering revenue sooner. Based on this roll-out, we envision a bright future of collaboration between our two companies.”

Alvaro Sanchez; “For us partnering with SpaceBridge has been a great pleasure, it opens the door to new customers who can tangibly benefit from our technology for simplifying the access while generating additional revenue and faster time to market, and commissioning. SpaceBridge is a great company to work with a great leader & engineer as CEO; they have great technology for connecting new networks, ASAT is a fantastic product.”

Satmotion Pocket developed by Integrasys for ASAT System with its accurate performance enabled SpaceBridge customers to deploy the VSAT network rapidly, easily, and at low cost. Satmotion Pocket is supported on the smartphone, thanks to its user-friendly interface, it does not require VSAT experts to carry out the installation. The time and cost savings are remarkable, as the field technician does not need to call the NOC/Hub, carry a satellite phone, or spectrum analyzer, in a few minutes the VSAT is up and running providing revenue to Space Bridge customers.

About Integrasys

Founded in 1990 by Hewlett Packard engineers, Integrasys specializes in providing satellite spectrum monitoring systems for the satellite, telecommunication, and broadcast markets. Its solutions enable fast and efficient installation and monitoring, helping reduce both errors and costs.

Integrasys is a fast-growing company which it has been awarded with the most innovative technology award in 2018 at the Satellite show by WTA; it has increased 30% in revenue each year during the last three years, and last year it has tripled its profit.

Source link

0
Continue Reading

Space

NASA’s new Mars rover will use X-rays to hunt fossils

NASAs new Mars rover will use X rays to hunt fossils

(22 September 2020 – JPL) NASA’s Mars 2020 Perseverance rover has a challenging road ahead: After having to make it through the harrowing entry, descent, and landing phase of the mission on Feb. 18, 2021, it will begin searching for traces of microscopic life from billions of years back.

That’s why it’s packing PIXL, a precision X-ray device powered by artificial intelligence (AI).

Short for Planetary Instrument for X-ray Lithochemistry, PIXL is a lunchbox-size instrument located on the end of Perseverance’s 7-foot-long (2-meter-long) robotic arm. The rover’s most important samples will be collected by a coring drill on the end of the arm, then stashed in metal tubes that Perseverance will deposit on the surface for return to Earth by a future mission.

In this illustration, NASA’s Perseverance Mars rover uses the Planetary Instrument for X-ray Lithochemistry (PIXL). Located on the turret at the end of the rover’s robotic arm, the X-ray spectrometer will help search for signs of ancient microbial life in rocks. (courtesy: NASA/JPL-Caltech)

nasas 2

PIXL requires pictures of its rock targets to autonomously position itself. Light diodes encircle its opening and take pictures of rock targets when the instrument is working at night. Using artificial intelligence, PIXL relies on the images to determine how far away it is from a target to be scanned. (courtesy: NASA/JPL-Caltech)

Nearly every mission that has successfully landed on Mars, from the Viking landers to the Curiosity rover, has included an X-ray fluorescence spectrometer of some kind. One major way PIXL differs from its predecessors is in its ability to scan rock using a powerful, finely-focused X-ray beam to discover where – and in what quantity – chemicals are distributed across the surface.

“PIXL’s X-ray beam is so narrow that it can pinpoint features as small as a grain of salt. That allows us to very accurately tie chemicals we detect to specific textures in a rock,” said Abigail Allwood, PIXL’s principal investigator at NASA’s Jet Propulsion Laboratory in Southern California.

Rock textures will be an essential clue when deciding which samples are worth returning to Earth. On our planet, distinctively warped rocks called stromatolites were made from ancient layers of bacteria, and they are just one example of fossilized ancient life that scientists will be looking for.

nasas 3

A device with six mechanical legs, the hexapod is a critical part of the PIXL instrument aboard NASA’s Perseverance Mars rover. The hexapod allows PIXL to make slow, precise movements to get closer to and point at specific parts of a rock’s surface. This GIF has been considerably sped up to show how the hexapod moves. (courtesy: NASA/JPL-Caltech)

An AI-Powered Night Owl

To help find the best targets, PIXL relies on more than a precision X-ray beam alone. It also needs a hexapod – a device featuring six mechanical legs connecting PIXL to the robotic arm and guided by artificial intelligence to get the most accurate aim. After the rover’s arm is placed close to an interesting rock, PIXL uses a camera and laser to calculate its distance. Then those legs make tiny movements – on the order of just 100 microns, or about twice the width of a human hair – so the device can scan the target, mapping the chemicals found within a postage stamp-size area.

“The hexapod figures out on its own how to point and extend its legs even closer to a rock target,” Allwood said. “It’s kind of like a little robot who has made itself at home on the end of the rover’s arm.”

Then PIXL measures X-rays in 10-second bursts from a single point on a rock before the instrument tilts 100 microns and takes another measurement. To produce one of those postage stamp-size chemical maps, it may need to do this thousands of times over the course of as many as eight or nine hours.

That timeframe is partly what makes PIXL’s microscopic adjustments so critical: The temperature on Mars changes by more than 100 degrees Fahrenheit (38 degrees Celsius) over the course of a day, causing the metal on Perseverance’s robotic arm to expand and contract by as much as a half-inch (13 millimeters). To minimize the thermal contractions PIXL has to contend with, the instrument will conduct its science after the Sun sets.

“PIXL is a night owl,” Allwood said. “The temperature is more stable at night, and that also lets us work at a time when there’s less activity on the rover.”

nasas 4

PIXL opens its dust cover during testing at NASA’s Jet Propulsion Laboratory. One of seven instruments on NASA’s Perseverance Mars rover, PIXL is located on the end of the rover’s robotic arm. (courtesy: NASA/JPL-Caltech)

X-rays for Art and Science

Long before X-ray fluorescence got to Mars, it was used by geologists and metallurgists to identify materials. It eventually became a standard museum technique for discovering the origins of paintings or detecting counterfeits.

“If you know that an artist typically used a certain titanium white with a unique chemical signature of heavy metals, this evidence might help authenticate a painting,” said Chris Heirwegh, an X-ray fluorescence expert on the PIXL team at JPL. “Or you can determine if a particular kind of paint originated in Italy rather than France, linking it to a specific artistic group from the time period.”

For astrobiologists, X-ray fluorescence is a way to read stories left by the ancient past. Allwood used it to determine that stromatolite rocks found in her native country of Australia are some of the oldest microbial fossils on Earth, dating back 3.5 billion years. Mapping out the chemistry in rock textures with PIXL will offer scientists clues to interpret whether a sample could be a fossilized microbe.

More About the Mission

A key objective for Perseverance’s mission on Mars is astrobiology, including the search for signs of ancient microbial life. The rover will also characterize the planet’s climate and geology, pave the way for human exploration of the Red Planet, and be the first planetary mission to collect and cache Martian rock and regolith (broken rock and dust). Subsequent missions, currently under consideration by NASA in cooperation with the European Space Agency, would send spacecraft to Mars to collect these cached samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 mission is part of a larger program that includes missions to the Moon as a way to prepare for human exploration of the Red Planet. Charged with returning astronauts to the Moon by 2024, NASA will establish a sustained human presence on and around the Moon by 2028 through NASA’s Artemis lunar exploration plans.

JPL, which is managed for NASA by Caltech in Pasadena, California, built and manages operations of the Perseverance and Curiosity rovers.

Source link

0
Continue Reading

Trending