Connect with us

(5 January 2021 – JPL) NASA’s upcoming space telescope, the Spectro-Photometer for the History of the Universe, Epoch of Reionization and Ices Explorer, or SPHEREx, is one step closer to launch.

The mission has officially entered Phase C, in NASA lingo. That means the agency has approved preliminary design plans for the observatory, and work can begin on creating a final, detailed design, as well as on building the hardware and software.

The preliminary design for the SPHEREx spacecraft, including hexagonal sun shields that will help keep the instruments cool. (courtesy: NASA/JPL-Caltech)

Managed by NASA’s Jet Propulsion Laboratory in Southern California, SPHEREx is scheduled to launch no earlier than June 2024 and no later than April 2025. Its instruments will detect near-infrared light, or wavelengths several times longer than the light visible to the human eye. During its two-year mission, it will map the entire sky four times, creating a massive database of stars, galaxies, nebulas (clouds of gas and dust in space), and many other celestial objects.

About the size of a subcompact car, the space telescope will use a technique called spectroscopy to break near-infrared light into its individual wavelengths, or colors, just like a prism breaks sunlight into its component colors. Spectroscopy data can reveal what an object is made of, because individual chemical elements absorb and radiate specific wavelengths of light. It can also be used to estimate an object’s distance from Earth, which means the SPHEREx map will be three-dimensional. SPHEREx will be the first NASA mission to build a full-sky spectroscopy map in near-infrared, and it will observe a total of 102 near-infrared colors.

“That’s like going from black-and-white images to color; it’s like going from Kansas to Oz,” said Allen Farrington, the SPHEREx project manager at JPL.

Before entering Phase C, the SPHEREx team successfully completed a preliminary design review in October 2020. During this multiday process, the team had to demonstrate to NASA leadership that they can make their complex, cutting-edge mission design a reality. Usually, the review is done in-person, but with COVID-19 safety precautions in place, the team had to adjust their presentation to a new format.

“It felt like we were producing a movie,” said Beth Fabinsky, SPHEREx’s deputy project manager at JPL. “There was just a lot of thought put into the production value, like making sure the animations we wanted to show would work over limited bandwidth.”

Three Key Questions

The SPHEREx science team has three overarching goals. The first is to look for evidence of something that might have happened less than a billionth of a billionth of a second after the big bang. In that split second, space itself may have rapidly expanded in a process scientists call inflation. Such sudden ballooning would have influenced the distribution of matter in the cosmos, and evidence of that influence would still be around today. With SPHEREx, scientists will map the position of billions of galaxies across the universe relative to one another, looking for statistical patterns caused by inflation. The patterns could help scientists understand the physics that drove the expansion.

The second goal is to study the history of galaxy formation, starting with the first stars to ignite after the big bang and extending to present-day galaxies. SPHEREx will do this by studying the faint glow created by all the galaxies in the universe. The glow, which is the reason the night sky is not perfectly dark, varies through space because galaxies cluster together. By making maps in many colors, SPHEREx scientists can work out how the light was produced over time and start to uncover how the first galaxies initially formed stars.

Finally, scientists will use the SPHEREx map to look for water ice and frozen organic molecules – the building blocks of life on Earth – around newly forming stars in our galaxy. Water ice gloms onto dust grains in cold, dense gas clouds throughout the galaxy. Young stars form inside these clouds, and planets form from disks of leftover material around those stars. Ices in these disks could seed planets with water and other organic molecules. In fact, the water in Earth’s oceans most likely began as interstellar ice. Scientists want to know how frequently life-sustaining materials like water are incorporated into young planetary systems. This will help them understand how common planetary systems like ours are throughout the cosmos.

Multiple mission partners are beginning construction on various hardware and software components for SPHEREx. The telescope that will collect near-infrared light will be built by Ball Aerospace in Boulder, Colorado. The infrared cameras that capture the light will be built by JPL and Caltech (which manages JPL for NASA). JPL will also build the sun shields that will keep the telescope and cameras cool, while Ball will build the spacecraft bus, which houses such subsystems as the power supply and communications equipment. The software that will manage the mission data and make it accessible to scientists around the world is being built at IPAC, a science and data center for astrophysics and planetary science at Caltech. Critical ground support hardware for testing the instruments will be built by the Korea Astronomy and Space Science Institute (KASI), a science partner on the mission in Daejeon, South Korea.

The SPHEREx team is scheduled to spend 29 months building the mission components before entering the next mission phase, when those components will be brought together, tested, and launched.

SPHEREx is managed by JPL for NASA’s Astrophysics Division within the Science Mission Directorate in Washington. The mission’s principal investigator, James Bock, has a joint position between Caltech and JPL. The science analysis of the SPHEREx data will be conducted by a team of scientists located in 10 institutions across the U.S., and in South-Korea.

Source link

0

Space

InSight’s ‘Mole’ ends its journey on Mars

InSights ‘Mole ends its journey on Mars

(14 January 2021 – JPL) The heat probe developed and built by the German Aerospace Center (DLR) and deployed on Mars by NASA’s InSight lander has ended its portion of the mission.

Since Feb. 28, 2019, the probe, called the “mole,” has been attempting to burrow into the Martian surface to take the planet’s internal temperature, providing details about the interior heat engine that drives the Mars’ evolution and geology. But the soil’s unexpected tendency to clump deprived the spike-like mole of the friction it needs to hammer itself to a sufficient depth.

After getting the top of the mole about 2 or 3 centimeters under the surface, the team tried one last time to use a scoop on InSight’s robotic arm to scrape soil onto the probe and tamp it down to provide added friction. After the probe conducted 500 additional hammer strokes on Saturday, Jan. 9, with no progress, the team called an end to their efforts.

Part of an instrument called the Heat Flow and Physical Properties Package (HP3), the mole is a 16-inch-long (40-centimeter-long) pile driver connected to the lander by a tether with embedded temperature sensors. These sensors are designed to measure heat flowing from the planet once the mole has dug at least 10 feet (3 meters) deep.

In this artist’s concept of NASA’s InSight lander on Mars, layers of the planet’s subsurface can be seen below, and dust devils can be seen in the background. (courtesy: IPGP/Nicolas Sarter)

“We’ve given it everything we’ve got, but Mars and our heroic mole remain incompatible,” said HP3’s principal investigator, Tilman Spohn of DLR. “Fortunately, we’ve learned a lot that will benefit future missions that attempt to dig into the subsurface.”

While NASA’s Phoenix lander scraped the top layer of the Martian surface, no mission before InSight has tried to burrow into the soil. Doing so is important for a variety of reasons: Future astronauts may need to dig through soil to access water ice, while scientists want to study the subsurface’s potential to support microbial life.

“We are so proud of our team who worked hard to get InSight’s mole deeper into the planet. It was amazing to see them troubleshoot from millions of miles away,” said Thomas Zurbuchen, associate administrator for science at the agency’s headquarters in Washington. “This is why we take risks at NASA – we have to push the limits of technology to learn what works and what doesn’t. In that sense, we’ve been successful: We’ve learned a lot that will benefit future missions to Mars and elsewhere, and we thank our German partners from DLR for providing this instrument and for their collaboration.”

Hard-Earned Wisdom

The unexpected properties of the soil near the surface next to InSight will be puzzled over by scientists for years to come. The mole’s design was based on soil seen by previous Mars missions – soil that proved very different from what the mole encountered. For two years, the team worked to adapt the unique and innovative instrument to these new circumstances.

“The mole is a device with no heritage. What we attempted to do – to dig so deep with a device so small – is unprecedented,” said Troy Hudson, a scientist and engineer at NASA’s Jet Propulsion Laboratory in Southern California who has led efforts to get the mole deeper into the Martian crust. “Having had the opportunity to take this all the way to the end is the greatest reward.”

Besides learning about the soil at this location, engineers have gained invaluable experience operating the robotic arm. In fact, they used the arm and scoop in ways they never intended to at the outset of the mission, including pressing against and down on the mole. Planning the moves and getting them just right with the commands they were sending up to InSight pushed the team to grow.

They’ll put their hard-earned wisdom to use in the future. The mission intends to employ the robotic arm in burying the tether that conveys data and power between the lander and InSight’s seismometer, which has recorded more than 480 marsquakes. Burying it will help reduce temperature changes that have created cracking and popping sounds in seismic data.

There’s much more science to come from InSight, short for Interior Exploration using Seismic Investigations, Geodesy, and Heat Transport. NASA recently extended the mission for two more years, to Dec. 2022. Along with hunting for quakes, the lander hosts a radio experiment that is collecting data to reveal whether the planet’s core is liquid or solid. And InSight’s weather sensors are capable of providing some of the most detailed meteorological data ever collected on Mars. Together with weather instruments aboard NASA’s Curiosity rover and its new Perseverance rover, which lands on Feb. 18, the three spacecraft will create the first meteorological network on another planet.

More About the Mission

JPL manages InSight for NASA’s Science Mission Directorate. InSight is part of NASA’s Discovery Program, managed by the agency’s Marshall Space Flight Center in Huntsville, Alabama. Lockheed Martin Space in Denver built the InSight spacecraft, including its cruise stage and lander, and supports spacecraft operations for the mission.

A number of European partners, including France’s Centre National d’Études Spatiales (CNES) and the German Aerospace Center (DLR), are supporting the InSight mission. CNES provided the Seismic Experiment for Interior Structure (SEIS) instrument to NASA, with the principal investigator at IPGP (Institut de Physique du Globe de Paris). Significant contributions for SEIS came from IPGP; the Max Planck Institute for Solar System Research (MPS) in Germany; the Swiss Federal Institute of Technology (ETH Zurich) in Switzerland; Imperial College London and Oxford University in the United Kingdom; and JPL. DLR provided the Heat Flow and Physical Properties Package (HP3) instrument, with significant contributions from the Space Research Center (CBK) of the Polish Academy of Sciences and Astronika in Poland. Spain’s Centro de Astrobiología (CAB) supplied the temperature and wind sensors.

Source link

0
Continue Reading

Space

Blue Origin successful demonstrates New Shepard crew capsule upgrades

Blue Origin successful demonstrates New Shepard crew capsule upgrades

(14 January 2021 – Blue Origin) Blue Origin has successfully completed its 14th mission to space and back today for the New Shepard program.

The New Shepard crew capsule outfitted with astronaut experience upgrades landing at Launch Site One. (courtesy: Blue Origin)

Mission NS-14 featured a crew capsule outfitted with astronaut experience upgrades for upcoming flights with passengers onboard. Capsule upgrades included:

  • Speakers in the cabin with a microphone and a push-to-talk button at each seat so astronauts can continuously talk to Mission Control.
  • First flight of the crew alert system with a panel at each seat relaying important safety messages to passengers.
  • Cushioned wall linings and sound suppression devices to reduce ambient noise inside the capsule.
  • Environmental systems, including a cooling system and humidity controls to regulate temperature and prevent capsule windows from fogging during flight, as well as carbon dioxide scrubbing.
  • Six seats.

Also today during ascent, the booster rotated at 2-3 degrees per second. This is done to give future passengers a 360-degree view of space during the flight.

This flight continued to prove the robustness and stability of the New Shepard system and the BE-3PM liquid hydrogen/liquid oxygen engine.

Also onboard today were more than 50,000 postcards from Blue Origin’s nonprofit Club for the Future. The Club has now flown over 100,000 postcards to space and back from students around the world. More information here.

Key mission stats

  • 15th consecutive successful crew capsule landing (every flight in program, including pad escape test in 2012).
  • The crew capsule reached an apogee of 347,568 ft above ground level (AGL) / 351,215 ft mean sea level (MSL) (105 km AGL/107 km MSL).
  • The booster reached an apogee of 347,211 ft AGL / 350,858 ft MSL (105 km AGL/106 km MSL).
  • The mission elapsed time was 10 min, 10 sec and the max ascent velocity was 2,242 mph / 3,609 km/h.

Source link

0
Continue Reading

Space

Infostellar introduces its new Chief Technology Officer

Infostellar introduces its new Chief Technology Officer

(11 January 2021 – Infostellar) Infostellar has announced the arrival of Steve Montgomery as the company’s Chief Technical Officer (CTO).

In this role, Steve will lead the company’s efforts in building and operating Infostellar’s global network of ground stations, including partner and company-owned assets. Steve will also leverage StellarStation by driving the technical development and expansion of the company’s ground segment products and services.

Steve Montgomery, Chief Technical Officer (courtesy: Infostellar)

“We are thrilled to have Steve join our team. Not only does he bring a wealth of technical expertise in building and operating global space assets, he also brings his experience in developing a startup GSaaS company into an industry leader.” says Infostellar Founder and CEO, Naomi Kurahara.

Kurahara added, “Steve will be a key factor in driving our products and services in the future, thus enabling Infostellar to provide mission critical ground operations to our growing client base.”

Steve has over 27-years of experience building and operating ground stations all over the world. He was a leader in the Universal Space Network team that was acquired by the Swedish Space Corporation (SSC) in 2009 and remained with the company until joining Infostellar.

Most recently, Steve held the position of Chief Establishment Director at SSC, where he was directly responsible for the installation and operation of a global network of ground stations in support of a wide variety of international space programs. While at SSC, Steve also held the position of Managing Director of SSC Space Australia Pty Ltd, where he was responsible for SSC’s ground station operations in that region. Additionally, Steve led SSC’s efforts in building a world-class Launch and Early Orbit Operation (LEOP) and On-Orbit communications capability that to this day provides mission critical services to the world’s leading space agencies and companies.

Montgomery said: “I am very pleased to be joining Naomi and the Infostellar team. This company is embarking on a journey that expands ground segment services while reducing capital and operational expenses by fully benefiting from cloud infrastructure. Together we have a unique opportunity to be an enabler of new space applications. ”

About Infostellar

Infostellar is a satellite ‘Ground Segment as a Service’ (GSaaS) provider. We provide flexible and scalable ground station services enabled by our cloud platform, ‘StellarStation’, which virtualizes ground station networks. By lowering the barriers to entry in the ground segment, Infostellar empowers newspace businesses to build better missions and improve the quality of their service. Founded in 2016, Infostellar is headquartered in Tokyo, Japan and has its European office in the UK.

About StellarStation

StellarStation is a flexible, scalable, satellite ground station sharing platform. After a one-time setup, satellite operators can access any ground station across our global network. StellarStation also enables ground station owners to monetise their unused capacity by sharing it with satellite operators.

Source link

0
Continue Reading

Trending